Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2021

Course: Particle and Fluid Particle Processing Program: B. Tech (Chemical Engineering)
Course Code: CHCE 3030

Time: 03 hrs.
Max. Marks: 100

Semester: V

Instructions:

1. This is a **closed book** examination. Please write your answers with detailed information, wherever required.

2. In case of any missing data or information, make necessary assumptions with proper reason.

SECTION A

S. No.		Marks	CO				
Q 1	What is particulate system? Will it be right to call them fluids? State reason (only one is enough).	4	CO1				
Q 2	Out of open and closed circuit crushing, which one do you think is more efficient? State your reason (s).	4	CO2				
Q 3	What is terminal settling velocity? What is its importance?	4	CO3				
Q 4	What is pneumatic transport? What is its significance?	4	CO4				
Q 5	What is nanoparticle? Will it be right to call a single "human hair" as a nanoparticle? State reason (<i>only one is enough</i>).	4	CO5				
	SECTION B	L					
Q 6	A powder material of average size of ~0.5 inch needs to be size reduced to about ~5 µm in size. Select suitable size reduction equipment for the purpose with proper reasons. Describe in details about the working of the equipment and its dominant mode of comminution involved.	10	CO2				
	OR Explain in detail about the similarities and dissimilarities between a cone crusher and gyratory crusher.						
Q 7	State in detailed about the differences between free settling and hindered settling. Include which of the assumptions are relax during the study of hindered settling.	10	CO3				
Q 8	How can you transform a fixed bed into a fluidized bed? Elaborate the detailed steps in point wise.	10	604				
	OR Derive Kozeny-Carman equation and mention all the necessary assumptions and its limitations.	10	CO4				
Q 9	With the help of five (5) examples, elaborate in detail about the role of nanotechnology in the improvement of modern human civilization.	10	CO5				

						SEC	CTIO	N C				
Q 10	A slurry consist of x % by weight of solids (specific gravity = 2.5) is to be clarified by continuous sedimentation. The feed to the clarifier is 4000 m³/day. The underflow contains 15% solids. Design the thickener/clarifier. Consider the liquid phase of the slurry as water. Here, $x = [2 + (\text{Last two digit of your roll number} \times 0.1)] & h_o = [42 + (\text{Last digit of your roll number})]$ The batch sedimentation test data is given as, $ \frac{\text{time (min)}}{\text{Height of}} = \frac{12}{h_o} = \frac{24}{15} = \frac{40}{8} = \frac{70}{15} = \frac{250}{15} = \frac{11}{15} = \frac{11}{$										20	CO4
Q 11	falling in an oil. Compute the terminal settling velocity (V_t). Given data: $\rho_p = 3500 \text{ kg/m}^3, \rho_f = 850 \text{ kg/m}^3,$ $\mu_f = \text{(first two digit of your roll number} + 0.13) \text{ poise}$ Acceleration due to gravity, $g = 9.8 \text{ m s}^{-2}$ Fig. 1: Dimensions of the particle. Here, the									Iere, the	20	CO3
	breadth of the particle, b = (last digit of your roll number +0.1) mm											

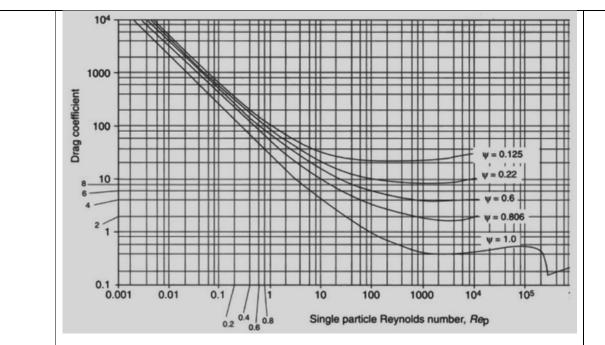


Fig. 2: Drag coefficient curve for various particles of sphericity, ψ .