Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Dec 2021

Course: Mass Transfer-II Program: B. Tech CERP Course Code: CHCE-3029

Semester: V Time 03 hrs. Max. Marks: 100

Instructions:

Instruc	SECTION A (20 Marks)			
S. No.		Marks	CO	
Q.1	Describe the gas absorption operation. Explain any two industrial examples.	4	CO1	
Q.2	Discuss the important criteria for solvent selection in liquid-liquid extraction.	4	CO1	
Q.3	Explain the different physico-chemical mechanism involved in solid-liquid extraction.	4	CO1	
Q.4	Explain the working principle of cooling tower. How cooling tower operation is different from other mass transfer operation?	4	CO1	
Q.5	Explain the difference between constant drying rate and falling drying rate with a neat diagram	4	CO1	
	SECTION B (40 Marks)			
Q.1	Derive the expression to estimate the number of ideal stages in a multistage cross-flow liquid-liquid extraction unit.	10	CO2	
Q. 2	Derive the expression for height of cooling tower operating in countercurrent manner.	10	CO2	
Q.3	Calculate the total drying time to dry a wet solid on a tray dryer under cross-flow of hot air from 30 % initial moisture to 1 % final moisture. The solid loading is 35 kg dry solid per m ² tray area. The constant drying rate is $N_c = 4.5 \text{ kg/m}^2$. h. The critical moisture is 10 % and the equilibrium moisture is 0.2 %. The final rate may be considered linear in moisture content.	10	CO3	
Q.4	Calculate the minimum quantity of clay adsorbent required to reduce the colour concentration of 50 units to 1 colour unit from one thousand kilograms of a waste oil. The adsorbent has an effective specific surface area of 25 m ² /kg, and the surface mass transfer coefficient (k_L) is 5.2 × 10 ⁻⁶ m/s (on the solid-phase concentration basis). The density of oil is 950 kg/m ³ . The equilibrium relationship is $Y = 4.2 \times 10^{-4} X^*$, where Y is number of 'colour units' per kg oil and X is number of 'colour units' per kg clay in equilibrium.	10	CO3	

Section C (40 Marks)					
Q. 1	A cooling tower is to be designed to cool water from 45 °C to 30 °C by countercurrent contact with air of dry-bulb temperature 30 °C and wet bulb temperature of 25 °C. The water rate is 5500 kg/h. m ² and the air rate is 1.25 times the minimum. Determine the tower height if overall transfer coefficient mass transfer coefficient is $K_{Y'}\bar{a} = 2500 \frac{kg}{h.m^3}$. Comment on the expected outlet water temperature from the tower in winter when the dry-bulb temperature is 20 °C and wet-bulb temperature drops down to 15 °C, the other parameters remaining unchanged.	20	CO4		
Q. 2	A solute is removed from a gas stream by using an existing absorption tower filled to 8.6 m by IMTP. The tower diameter is considered suitable for the required service, but the water rate has to be calculated. The feed gas has 3.5 mol% of the solute and the exit gas may have 0.05 mole% of it. The solubility of the solute is given by Henry's law: $y = 2.53x$. Following data are available: superficial gas velocity at the top of the column = 0.8 m/s; total pressure = 1 atm; temperature = 26°C; overall gas-phase mass transfer coefficient, $k_{G}\bar{a} = 7050kg / (h)(m^{3})(\Delta p, bar)$; molecular weight of the solute = 30. Determine the liquid flow rate and HETP of the packing	20	CO4		