Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2021

Course: Flight Mechanics I Program: B.Tech ASE/ASE+AVE

Course Code: ASEG 3001

Semester: V Time 03 hrs.

Max. Marks: 100

S. No.	SECTION A [Short Answers] 5x4=20 Marks	Marks	CO
Q 1	Classify different layers of standard atmosphere.	4	CO1
Q 2	Compare different types of Drag forces acting on aircraft.	4	CO2
Q 3	Find the velocity of an airplane at a standard altitude of 3 Km. At a point on the wing, the airflow velocity is 70 m/s and pressure 6.9509.2 N/m ² . Assume the flow incompressible. [at 3 km: $P=7.010x10^4$ N/m ² $\rho=0.9090$ kg/m ³]	4	CO3
Q 4	Show that climb angle (θ) is given by $\theta = \sin^{-1}\left(\frac{T-D}{W}\right)$ Where T is thrust, D is drag and W is weight forces acting on airplane.	4	CO4
Q 5	Show that for minimum power(mp) condition of airplane $C_{d_{mp}} = 4C_{d_0}$	4	CO5
	SECTION B [Long Answers] 10x4=40 Marks		
Q 6	Determine at what geometric altitude that the error between the geometric altitude and the geopotential altitude is greater than 5% of the geometric altitude. The radius of the Earth is 6378.135 km.	10	CO1
Q 7	 An aircraft weighing 250000 N has a wing area of 80 m² and its drag equation is C_D = 0.016 + 0.04 C_L² Calculate minimum thrust required for steady level Flight and corresponding speed at sea level Calculate minimum power required and corresponding speed at sea level 	10	CO2
Q 8	The altimeter of a low-speed aircraft reads 2500m. A Pitot tube mounted on the wing tip measures a pressure of 8056. kg/m². If the outside air temperature is 277 deg K. What is the true velocity of the airplane? What is the equivalent airspeed? [At 8000 ft P=7 674.6 kg/m²]	10	CO3

Q 9	Show that radius of turn (R) and turn rate (ω) for airplane level turn is given by													
	$R = \frac{V_{\infty}^2}{g\sqrt{n^2 - 1}}$ $\omega = \frac{g\sqrt{n^2 - 1}}{V_{\infty}}$											10	CO4	
SECTION C [Case Based Study] 2x20=40 Marks														
Q 10	A small aircraf is powered by a piston engine. The propulsive efficiency is a depedent on airspeed and is given below, that is the HP given is the HP available. The aircraft has a wing area of S=28 m², W= 18000 N, $C_D = 0.036 + 0.105 C_L^2$, $C_{L_{max}} = 1.37$ (no flaps) and $C_{L_{max}} = 2.00$ (with flaps). The engine properties are given in the follwoign table. a) Plot HP _{req} vs Velocity for sea level b) On same plot as a) plot HP _{avail} vs Velocity c) From the same plot, find V_{max} and V_{min} $ \frac{V(ft/sec)}{HP(sea)} = \frac{83.9}{102.7} \frac{102.7}{117.3} \frac{132.0}{132.0} \frac{146.7}{161.3} \frac{176.0}{176.0} \frac{190.7}{190.7} \frac{205.3}{205.3} \frac{212.7}{220.0} \frac{220.0}{102.7} \frac{117.3}{102.0} \frac{132.0}{102.7} \frac{146.7}{102.0} \frac{161.3}{102.0} \frac{176.0}{102.0} \frac{190.7}{102.0} \frac{205.3}{102.0} \frac{212.7}{102.0} \frac{220.0}{102.0} \frac{176.0}{102.0} \frac{190.7}{102.0} \frac{205.3}{102.0} \frac{212.7}{102.0} \frac{220.0}{102.0} \frac{176.0}{102.0} \frac{190.7}{102.0} \frac$											20	CO5	
Q 11	A) Derive Brequet Range and Endurance formula for Jet engine aircraft.[10 Marks] B) An airplane weighing 15000 N is powered by a single piston engine delivering 220 Hp. Its specific fuel consumption is $7.3 \times 10^{-7} N/w.s.$ wing span =10 m, wing area 15 m ² ., $C_{D_0} = 0.03$, e=0.95, prop eff. $\eta_{pr} = 0.85$. If this airplane is loaded with 1450 N fuel weight, estimate maximum range and edurance[10 Marks]										20 m ²	20	CO4	