Cours Progra Cours Instru (Sectio	UNIVERSITY O End Sen Geological and Geophysical Me : B.Tech. APE- UP Code: PEGS 3016 ions: All questions are compulso B) and Q 10 (Section C).		ITY WIT OLE amin Explo	A PUR M AN ion, D tion ions;	ENER cembe owever	GY STUDIES 2021 Semester: V Duration: 03 h Max. Marks: 1 internal choices are given	
Each	uestion carries 4 Marks.		CT	N A			
S. No.	Question						CO
Q 1	Explain the process to determin	ke	Dip	a geo	ical	ure in a Geological map.	CO1
Q 2	Refer the Table 1, which present hydrogen index and oxygen index Table 1	Rock or the S1 0.30 0.34 0.22 1.94	$\left\lvert\,$al Py udied S2 12.5 6.6 6.3 5.9 c\right.	lysis S3 0.8 0.34 0.41 0.45	ata. Cal TOC 13.70 7.28 6.93 8.37	ulate the production index,	CO 2
Q 3	Explain the following: a) Changes observed in gravity anomaly response due to a spherical object with respect to change in density contrast, depth of the body from surface and size of the body. [3] b) Will a feather fall with the same acceleration as a brick or not and why (if both are in a vacuum)? [1]						CO 3
Q 4	From well logs, the following P-wave velocities were determined: Sandstone $4.3 \mathrm{~km} / \mathrm{s}$, Water $1.5 \mathrm{~km} / \mathrm{s}$, Gas $0.3 \mathrm{~km} / \mathrm{s}$, Shale $2.4 \mathrm{~km} / \mathrm{s}$. Calculate the porosity of reservoir.						$\mathrm{CO5}$
Q 5	Justify the statement, "Variation in grain size and geological structure can create directional permeability".						CO4
Each 9	estion carries 10 marks		CTI	N B			
Q 6	Discuss Sequence of processes for Exploration of Hydrocarbons.						CO1

Q 7	Explain the procedure for source rock evaluation.	CO2
Q 8	i. Calculate the difference in theoretical value of " g " between latitudes $2.835 \& 3.52$ degrees. [5] ii. Calculate Bouguer Anomaly at latitude 4.4633 at an elevation of 434 m above mean sea level if Raw gravity is 977929 mgal and density of slab is $3.2 \mathrm{~g} / \mathrm{cc}$. [5] OR A gravity survey was conducted over an area and Figure 1 shows the gravity anomaly profile across the body. Assume the ore body to be spherical. a) Calculate the depth to the centre of the body. [3] b) Assume that gravity anomaly is due to the ore body of density $3800 \mathrm{~kg} \mathrm{~m}-3$ and density of country rock is $2750 \mathrm{~kg} \mathrm{~m}-3$. Calculate the radius of the ore body. [3] c) Calculate the excess mass and total mass of the ore body. [4] Figure 1	CO3
Q 9	Discuss variation caused in amplitude of seismic waves under different circumstances.	$\mathrm{CO5}$
Each Question carries 20 Marks. SECTION-C		
Q 10	A seismic data acquisition company carried out geophysical survey in a basin and observed following P-wave velocities in three different layers as $4.1 \mathrm{~km} / \mathrm{s}, 6.8 \mathrm{~km} / \mathrm{s}$ and $3.5 \mathrm{~km} / \mathrm{s}$ respectively. Consider the amplitude of incident wave as unity and density of all the layers as $2700 \mathrm{~kg} / \mathrm{m} 3$, depth to first and second interfaces are 600 m and 1500 m respectively and that	$\mathrm{CO5}$

	there is no geometrical spreading, attenuation, or scattering. Construct the seismic record of amplitude versus time of the arrival of first three possible waves in the geophone. OR Construct a survey design for 3D seismic data acquisition on land.	
Q 11	Describe in detail about formation of petroleum w.r.t. geological processes, mention about all stages, genetic potential \& transformation ratio, role of temperature, time and pressure.	$\mathbf{C O 4}$

