Name: Enrolmo	ame: nrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY ST End Semester Examination, December 2021	UDIES		
Programme Name:B. Tech (ECE)Semester: V			3 hrs	
	SECTION A (5x4=20)			
S. No.		Mark s	СО	
Q 1	An X-band Pulsed cylindrical magnetron has the following parameters: Anode voltage $(V_0) = 40 \text{ KV}$ Anode Current $(I_0)=96 \text{ amp}$ Magnetic flux density $B_0=0.02 \text{ Wb/sq.m}$ Radius of cathode cylinder (a)=6 cm Radius of anode (b)=12 cm. Operating Frequency is 10 GHz. Compute: Cyclotron angular frequency, Cutoff Voltage for fixed B_0 and Cutoff Magnet density for fixed V_0 .	4	CO3	
Q 2	Twocavity klystron amplifier has the following parameters: Beam Voltage (V ₀)=40 KV Beam Current (I ₀)=2.5 amp Operating Frequency =3 GHz; input & output beam Coupling Co-eff =1 Signal voltage (V ₁)=1.5V (rms) Dc electron charge density =1.2 X10 ⁻⁶ c/m ³ Cavity shunt resistance (R _{sh}) =4 KΩ Total Shunt resistance including load(R _{shl}) =1 KΩ., Reduction factor (R) =0.5 Determine plasma frequency, induced voltage in the output cavity, power delivered the load, electronic efficiency.	4 ed to	CO3	

0.1			1
Q 3	Using double minima method it is observed that the variations in 3 dB points is 0.001. Distance between the two consecutive minima logations is $d1 = 4.2$ am and $d2 = 8.75$ cm		
	Distance between the two consecutive minima locations is $d1 = 4.3$ cm and $d2 = 8.75$ cm from the load. Find SWP, reflection coeff and find the load impedance if characteristic	4	CO5
	from the load. Find SWR, reflection coeff and find the load impedance if characteristic impedance of the line is 50 ohms.	-	0.03
	Impedance of the line is 50 onlins.		
Q 4	TE ₁₁ mode is propagating through a rectangular waveguide having the diameter of 3cm		
	and 1.5 cm as 'a & b' respectively Guide is filled with dielectric material having	4	CO1
	ϵ_r =2.2. Find fc, λg and Zg in the guide for an operating frequency of 5 GHz.		
Q5.	An IMPATT diode has the following parameters:		
	Carrier drift velocity = $2x107$ cm/s, drift region length = 5μ m, Maximum operating	4	CO4
	voltage and current are 100V, 300 mA, efficiency =10%, breakdown voltage of 85	-	04
	Volts. Find output power, resonant frequency.		
0.6	SECTION B (4x10=40)		
Q 6	Explain how will you measure the Insertion loss, Return loss and Attenuation of DUT.	10	CO5
Q 7	Explain Two valley model. What are the various modes of Oscillations of GUNN diode	10	CO4
Q8	Derive the Hartree voltage in case of linear magnetron.		
QU	Derive the Hartice voltage in case of finear magnetion.	10	CO3
Q9	A phase detector produces an output signal proportional to the difference between two		
	RF input signals which are expressed as		
	$V_1 = V_0 Cos(\omega t)$ and $V_2 = V_0 Cos(\omega t + \theta)$. If these two signals are applied to single ended		
	mixer using 90 deg hybrid, show that output IF current after low pass filtering is	10	CO2
	mixer using 50 deg hybrid, show that output if eartern after 10w pass mering is		
	$I=kV_0^2\sin\theta$.		
	SECTION-C (2x20=40)		
	· · ·		
Q11.	Design an amplifier to have gain of 10 dB at 6 GHz using transistor with the following		
	parameters. Z0=50 ohms, S_{11} =0.61(-170 deg), S_{12} =0, S_{21} =2.24(32 deg), S_{22} =0.72(-83		
		30	COD
	deg). Plot Gs =1 dB and Gl=2 dB circles and use. Design matching circuits at input side	20	CO2
		20	CO2
Q12a	deg). Plot Gs =1 dB and Gl=2 dB circles and use. Design matching circuits at input side	20	CO2
Q12a	deg). Plot Gs =1 dB and Gl=2 dB circles and use. Design matching circuits at input side using short circuited series stub and output side with open circuited shunt stubs.	20 15	CO2 CO1
	deg). Plot Gs =1 dB and Gl=2 dB circles and use. Design matching circuits at input side using short circuited series stub and output side with open circuited shunt stubs.Deduce the field expression and Quality factor of TM 110 mode of rectangular cavity resonator.		
Q12a Q12b.	deg). Plot Gs =1 dB and Gl=2 dB circles and use. Design matching circuits at input side using short circuited series stub and output side with open circuited shunt stubs.Deduce the field expression and Quality factor of TM 110 mode of rectangular cavity		
	deg). Plot Gs =1 dB and Gl=2 dB circles and use. Design matching circuits at input side using short circuited series stub and output side with open circuited shunt stubs.Deduce the field expression and Quality factor of TM 110 mode of rectangular cavity resonator.		

-----XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX