

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Dec 2021

Course: Control System Engineering Program: B. Tech electronics and communication engineering Course Code: ECEG 4007

Semester: V Time 03 hrs Max. Marks: 100

SECTION A $(5Q \times 4M = 20M)$

S. No.		Marks	CO
Q 1	Differentiate between transient and steady state stability?	4	CO2
Q 2	What do you understand by frequency response analysis? What is minimum phase system.	4	CO3
Q 3	What do you understand by control system design. Explain the types of control system design?	4	CO1
Q 4	For the block diagram shown in figure 1? Find the value of transfer function Classify the system output behavior based on the value of damping ratio. $\frac{R(s)}{(s+2\zeta\omega_n)} \xrightarrow{C(s)} C(s)$ Figure 1 Block Diagram	4	C01
Q 5	Explain the types of standard test signals?	4	CO1
	SECTION B [4Q X 10M=40 M]	L	
Q 6	Obtain mathematical model for speed control of Armature controlled DC Servomotor. Consider the model as shown in figure 2.	10	CO2

	Fixed R_a L_a $+$ R_a R_a L_a $+$ R_a R_a L_a $+$ R_a		
Q 7	The characteristics equation of a system in differential form is		
	$\ddot{x} - (K+2)\dot{x} + (2K+10)x = 0$ Find the values of K for which the system is (i) stable (ii) limited stable and (iii) unstable. For stable case, for what values of K is the system (i) underdamped (ii) overdamped	10	CO2
Q8	Elucidate the mathematical equation of PID controller. What is the advantage of PI controller over PD controller?	10	CO3
Q 9	Find the transfer function of a second-order system that yields a 12.3% overshoot and a settling time of 1 second? OR Find the equivalent transfer function T(s)= C(s)/ R(s) for the system as shown in figure? $R(s) + C_2(s) + C_2(s) + C_3(s) + C_4(s) + C_6(s) + C_4(s) + C_6(s) + C_$	10	CO3

	SECTION C [2Q X 20M=40]		
Q 10 (a)	Obtain the transfer functions for the following systems with state-space models available as: $\begin{bmatrix} \dot{x}_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$	10	
(b)	a. $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$; $y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$ Explain the concepts of observability and controllability with reference to linear time invariant systems. Find the controllability of the system described by the state		
	invariant systems. Find the controllability of the system described by the state equation.	10	CO3
	$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 3 \end{bmatrix} u$		
Q 11	Design the complete root locus for $G(s)H(s) = \frac{K}{s(s+2)(s+4)}(K > 0)$ From the root locus plot find the range of value of K for which the system will have damped oscillatory response. OR	20	
	Using the Nyquist criterion ,find the range of K for stability for the system shown in figure?		CO4
	$\frac{R(s) + K}{(s+2)}$ $C(s)$ $\frac{1}{(s+4)(s+6)}$		