Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Somester Examination December 2021

End Semester Examination, December 2021

Course: Solid Mechanics Course Code: MECH3022

Program: BTech- Mechanical

SECTION A

S. No.	Question Statement	Marks	СО	
Q 1	Explain the properties of Kronecker Delta and Permutation symbol.	4	CO1	
Q 2	Explain the summation convention.	4	CO1	
Q 3	Describe plane stress and plane strain problems.	4	CO1	
Q 4	Describe the types of boundary condition.	4	CO1	
Q 5	Explain the properties of influence coefficient.	4	CO1	

SECTION B

Q 6	Derive Castigliano's first theorem.	10	CO1
	OR		
	Describe the Maxwell-Betti's reciprocal theorem with proof.		
Q 7	Derive the Beltrami-Michell equation corresponding to isotropic elasticity.	10	C01
Q 8	A rectangular plate has sides <i>a</i> and <i>b</i> = 0.6 <i>a</i> . The plate undergoes deformation by the prescribed displacement field $u_1 = \frac{1}{100} \left(1 - \frac{x_1}{a}\right) x_2$ and $u_2 = \frac{1}{100} \left(1 - \frac{x_2}{b}\right) x_1$. Assume that the deformation of the plate satisfies the plane stress condition and strain components comply with the small strain assumptions. Material is isotropic linearly elastic with Young's modulus $E = 20$ GPA and Poisson's ratio $v = 0.2$.	10	CO2

Semester: V Time: 03 hrs.

Max. Marks: 100

	 (a) For the prescribed displacement field determine the components e₁₁, e₂₂ and e₁₂. (b) Evaluate the strain components at point P with coordinates x₁ = 0.2a and x₂ = 0.2a. (c) Determine the stress tensor components σ₁₁, σ₂₂ and σ₁₂ at point P. 		
Q 9	Consider a problem with body forces, $f = \begin{cases} f_1 \\ f_2 \\ f_3 \end{cases} = \begin{bmatrix} -6Gx_2x_3 \\ 2Gx_1x_3 \\ 10Gx_1x_2 \end{bmatrix} \text{ where, } G = \frac{E}{2(1+2\nu)} \text{ and } \nu = \frac{1}{4}$ The displacement field is given as, $u = \begin{cases} u_1 \\ u_2 \\ u_3 \end{cases} = \begin{bmatrix} C_1x_1^2x_2x_3 \\ C_2x_1x_2^2x_3 \\ C_3x_1x_2x_3^2 \end{bmatrix}, \text{ determine the constants } C_1, C_2 \text{ and } C_3.$	10	CO2
	SECTION-C		1
Q 10	 (a) Consider a plate with sides 2a and b in x₁ and x₂ directions respectively. The stress distribution is given as σ₁₁ = px₁³x₂ - 2c₁x₁x₂ + c₂x₂ σ₂₂ = px₂³x₁ - 2px₁³x₂ σ₁₂ = -³/₂px₁²x₂² + c₁x₂² + ¹/₂px₁⁴ + c₃ Obtain the corresponding Airy stress function. (b) Show that φ = x₁⁴x₂ + 4x₁²x₂³ - x₂⁵ is a valid Airy stress function, that is, that ∇⁴φ = 0, and compute the stress tensor for this case assuming a state of plane strain with v = 0.25. (c) Determine the constants C₁, C₂, C₃ if the stresses are σ_{xx} = C₁xy; σ_{yy} = 0; τ_{xy} = C₂ + C₃y²; subjected to the boundary, τ_{xy} = 0, at y = ±h; ∫ τ_{xy} dy = -P; ∫ σ_{xx} ydy = -Px 	20	CO3
Q 11	Derive the expression of Eulerian strain tensor. The strain tensor at a point in a body is given by $\begin{bmatrix} 0.4 & -0.1 & -0.4 \\ -0.1 & 0.2 & 0.3 \\ -0.4 & 0.3 & -0.3 \end{bmatrix} \times 10^{-3}$; Obtain the stress tensor at the point if the body is made of steel with Young's modulus 200 GPa and Poisson's ratio 0.3.	20	CO3