N		
11	ame:	

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination Dec 2021 and Jan 2022

Course: Classical Mechanics

Program: MSc Physics

Semester: I

Time 03 hrs.

Course code: PHYS7001 Max. Marks: 100

SECTION A

1. Each Question will carry 4 Marks

2. Instruction: Complete the statement / Select the correct answer(s)

S. No.	Question	CO
Q 1	Show that the transformation $P = \frac{1}{2}(p^2 + q^2), \qquad Q = tan^{-1}\frac{q}{p}$	CO2
Q2	is canonical Write the Lagrangian and equation of motion for a mass m suspended to a spring of force constant k and allowed to swing vertically.	CO3
Q3	A clock keeps correct time. With what speed should it be moved relative to an observer so that it may seem to lose 2 minutes in 24 hrs.	CO1
Q4	A particle of unit mass moves in a potential $V(x) = ax^2 + \frac{b}{x^2}$, where a and b are positive constants. Determine the angular frequency of small oscillations about the minimum of potential.	CO3
Q5	Determine the value of the Poisson's bracket $[J_y, z]$	CO2
	SECTION B	<u> </u>
1. 1	Each question will carry 10marks	
2.]	Instruction: Write short / brief notes	

—•	2. Instruction, write short, blici notes		
Q 6	A particle of mass m moves under the action of central force whose potential is $V(r) = Kmr^3$ (K>0), then determine the value of kinetic energy and angular momentum for which the orbit will be a circle of radius R about origin. Also calculate the period of circular motion.	CO2	
Q 7	Describe the scattering in a central force field and hence obtain the expression for scattering cross-section in Rutherford scattering.	CO3	
Q 8	Discuss mass energy equivalence relation and obtain the relation $E = mc^2$.	CO2	
Q.9	The Lagrangian of a system is given by $L = \frac{1}{2}m\dot{q}_1^2 + 2m\dot{q}_2^2 - K\left[\frac{5}{4}q_1^2 + 2q_2^2 - 2q_1q_2\right]$ m and K are constants. Determine the frequencies of the normal modes of the system	CO3	

Section C

- 1. Each Question carries 20Marks.
- 2. Instruction: Write long answer.

Q10	Discuss the vibrations of a linear triatomic molecule of type AB ₂ . Obtain the frequencies of the normal modes.	
		CO3
	OR	
	Obtain the Lagrange's equation of motion from variational principle	CO3
Q.11	Show that for a particle, moving under central force $f(\mathbf{r})$, the equation of orbit is given by $\frac{d^2u}{d\theta^2} + u = -\frac{m^2u^2}{l^2}f\left(\frac{1}{u}\right)$	CO2

List of important Constants

Planck's constant, $h = 6.6 \times 10^{-34} \text{ J.s}$

Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ J/K}$

Mass of electron, $m_e = 9.1 \text{ x } 10\text{-31 Kg}$

Mass of proton, $m_p = 1.67 \times 10$ -27 Kg

Velocity of light, $c = 3 \times 108 \text{ m/s}$

Rydberg Constant, $R = 1.097 \times 107 \text{ m}-1$

Avogadro's number = 6.023×1023

Permeability of free space, $\mu_0 = 4\pi \times 10^{-7} \text{ Henry/m}$

Permittivity of free space, $\varepsilon_0 = 8.85 \text{ x } 10$ -12 F/m