Name:		

Enrolment No:

Semester: I

Time 03 hrs.

Max. Marks: 100

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2021

Course: M.Sc. Chemistry

Program: Advanced Physical Chemistry

Course Code: CHEM7016

No. of pages: 2 Instructions: Read the instructions given below carefully: **SECTION A** All questions are compulsory S. No. Marks CO What are the possible term symbol of the excited states of Na atom with electronic O 1 4 CO₃ configuration 1s²2s²2p⁶3d¹? The transmittance of an alcoholic solution of an organic dye at 500 nm is 20 percent Q 2 4 CO₃ in a 1 cm cell. What is the absorbance of the dye solution? What are gross and specific selection rule for vibrational and rotational spectroscopy? Q 3 4 **CO1** Q 4 Define micro-canonical, canonical and grand canonical ensembles. 4 CO₁ Which hydrogenic orbital is represented by radial wave function $\Psi = r^2(\alpha - r)e^{-\beta r}$ where Q 5 4 **CO1** α and β are constants? SECTION B Internal choice is given in question No. 4 (a) What are the expression of first order and second order perturbation energy Q 1 corrections? Mention all the terms involved in the expressions. (b) Calculate the first order perturbation correction to the energy for the ground 10 CO₂ state of a particle in one dimensional box $(0\rightarrow a)$ due to the perturbed part λx . Q 2 (a) What are the causes of spectral line broadening? (b) Explain the origin of splitting of lines of Cs atomic spectra using spin orbit coupling. Use a diagram with proper labelling and term symbol to 10 CO₂ explain the spin orbit coupling of Cs (Electronic configuration: $[Xe]6s^{1}$). (a) The energy in cm⁻¹ of the photon absorbed when a heteronuclear Q 3 diatomic molecule goes from v = 0, J = 0 to v = 1, J = 1. Assume the v = 010 **CO1** 0 and v = 1 states have the same B values. Given that $\omega_e = 300 \text{ cm}^{-1}$, B = 2 cm⁻¹, anharmonicity constant (γ_e) = 0.005.

Q 4	(b) What are the selection rule of rovibrational transitions of P, Q and R branch? Using a diagram show the origin of P, Q, R branch.Write down all the Maxwell's relation and criteria of spontaneity (in terms of G and A) using thermodynamic square.		
	OR Distinguish Maxwell Boltzmann, Fermi-Dirac and Bose-Einstein statistics.	10	CO3
	SECTION-C		
	Internal choice is given in question No. 2		
Q 1	Q 1 (a) The vibration of $^{35}\text{Cl}^{35}\text{Cl}$ molecule can be considered as simple harmonic oscillation. The force constant is 400 Nm ⁻¹ . Calculate the fundamental vibration frequency and the zero point vibrational energy of this molecule in joule. (Given: Plank constant = 6.626×10^{-34} Js).		CO2
	(b) Discuss the relation between canonical and molecular partition function.		
Q 2	 (i) Using variation theorem calculate the ground state energy of a particle of mass "m" in one dimensional box of length "a" described by a trial wave function φ = x(a-x). where 0 ≤ x ≤ a. (Given: ∫₀^a φ*φdx = (a-5)/30) (ii) Find the value of commutator [x, p_x²], where x is the position and p_x is momentum in the x direction. OR (i) Discuss the principles of Debye-Huckel Theory. (ii) Describe the collision theory of a bimolecular gas phase reaction. 	10 +10	CO4