Name: Enrolment No:			
Cours Progr Cours	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021 Mathematical Physics : B.Sc. (H) Physics and Integrate B.Sc. M.Sc. Physics Code: PHYS 1011		$\begin{aligned} & \text { ter: I } \\ & \mathbf{3} \text { hrs. } \\ & 100 \end{aligned}$
1. Each Question will carry 4 Marks SECTION A 2. Instruction: Write the statement / Select the correct answer(s) S.			
S. No.		Marks	CO
Q1	What are the key differences between Normal, Binomial, and Poisson Distribution?	4	CO1
Q2	A population grows at a rate of 5% per year. How long does it take for the population to double?	4	CO 2
Q3	Solve the differential equation $\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0$.	4	CO 2
Q4	The curl of vector field $\vec{f}(x, y, z)=x^{2} \hat{i}+2 z \hat{j}-y \hat{k}$ is ?	4	CO3
Q5	Find the particular integral of $\left(D^{3}-3 D^{2}+4\right) y=e^{2 x}$.	4	CO2
SECTION B 1. Each question will carry 10 marks 2. Instruction: Write short / brief notes			
Q6	a) If A is a Hermitian (skew-Hermitian) matrix, show that iA is a skew Hermitian (Hermitian) matrix. b) Define Dirac Delta function and list its important properties.	10	CO1
Q7	a) Define differentiability of a function at a given point. What is the necessary and sufficient condition for a function to be differentiable (State mathematically)? b) Write the expressions for the 'del' operator in Cartesian, cylindrical and spherical coordinates.	10	CO1
Q8	If $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, then show that a) $\vec{\nabla} r=\frac{\vec{r}}{r}$ b) $\vec{\nabla}\left(\frac{1}{r}\right)=-\frac{\vec{r}}{r^{3}}$	10	CO3
Q9	Find complete solution of any of the following differential equations:	10	CO 2

	$(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=\sin [2 \log (1+x)]$	
OR		
	$\left(D^{2}-4 D+4\right) y=8 x^{2} e^{2 x} \sin 2 x$	

SECTION-C

1. Each Question carries 20 Marks.

2. Instruction: Write long answers.

Q10	(a) Find the angle between the surfaces $z=x^{2}+y^{2}$ and $z=\left(x-\frac{\sqrt{6}}{6}\right)^{2}+\left(y-\frac{\sqrt{6}}{6}\right)^{2}$ at the point $P=\left(\frac{\sqrt{6}}{12}, \frac{\sqrt{6}}{12}, \frac{1}{12}\right)$. (b) Find the constants a, b, c so that $\vec{F}=(x+2 y+a z) \hat{\imath}+(b x-3 y-z) \hat{j}+(4 x+c y+2 z) \hat{k}$ is irrotational and hence find the function φ such that $\overrightarrow{F \vec{\nabla}} \varphi$	20	CO3
11	(a) Calculate the work done in moving a particle once around a circle C in the xy plane if the circle has center at the origin and radius 3 and if the force field is given by $\vec{F}=(2 x-y+z) \hat{\imath}+\left(x+y-z^{2}\right) \hat{j}+(3 x-2 y+4 z) k$. Does the work done in this case depend on path? Justify your answer. (b) Evaluate $\iint_{S} x y^{2} d x d y$ on the surface given below:	20	CO4

| | |
| :---: | :---: | :---: | :---: |
| [Either do above (a) and (b) both, or the following] | |
| Suppose $\mathbf{F}=y \mathbf{i}+(x-2 x z) \mathbf{j}-x y \mathbf{k}$. Evaluate $\iint_{\mathbf{R}}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot \mathbf{n} d S$ where S is the surface of the sphere | |
| $x^{2}+y^{2}+z^{2}=a^{2}$ above the $x y$-plane | |

