UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, January 2022
 Program: B.Sc. (Hons.) Mathematics \& Int. B.Sc. \& M.Sc. (Mathematics)
 Semester : I Duration $: 03$ hrs. Max. Marks: 100

Course: Algebra
Course Code: MATH 1040

Instructions:

1. Section A has 5 questions. All questions are compulsory.
2. Section B has 4 questions. All questions are compulsory. Question 4 has internal choice to attempt any one.
3. Section C has 2 questions. All questions are compulsory. Question 2 has internal choice to attempt any one.

SECTION A (Scan and upload) $\text { (5Qx 4M = } 20 \text { Marks) }$			
		Marks	COs
Q 1	For what values of k the complex number $Z_{1}=2 e^{\frac{\pi}{3} i}$ and $Z_{2}=2 e^{\frac{6 k \pi+\pi_{i}}{3} i}$ are equal?	4	CO1
Q 2	Find the modulus, argument, and polar form of the complex number $Z=-3 i$.	4	CO1
Q 3	Using mathematical induction, show that if n is a positive integer then $1+2+\cdots+n=\frac{n(n+1)}{2} .$	4	CO2
Q 4	$\begin{aligned} & \text { Find the rank of the matrix } \\ & \left.\qquad \begin{array}{rcccc} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \end{array}\right] \end{aligned}$	4	CO3
Q 5	Calculate the values of k such that the system of equations $x+k y+3 z=0, \quad 4 x+3 y+k z=0, \quad 2 x+y+2 z=0$ has non-trivial solution.	4	CO3
SECTION B(Scan and upload) $\quad(4 \mathrm{Qx10M}=\mathbf{4 0}$ Marks $)$			
Q 1	Determine all the roots of $(-8-8 \sqrt{3} i)^{1 / 4}$ and exhibit them geometrically.	10	CO1
Q 2	The linear transformation $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by $F(x, y)=(2 x+3 y, 4 x-5 y),$ where \mathbb{R} is the set of real number. Find the matrix representation $[F]_{S}$ of F relative to the basis $S=\left\{u_{1}, u_{2}\right\}=\{(1,-2),(2,-5)\}$.	10	CO4
Q 3	Let the matrix A be given as $A=\left[\begin{array}{cccc} 1 & 0 & 2 & 1 \\ 3 & 1 & 2 & 1 \\ 4 & 6 & 2 & -4 \\ -6 & 0 & -3 & -4 \end{array}\right]$ Check whether the rows of matrix A form a set of independent vectors. If not then find the relation among them.	10	CO3

Q 4	Define the eigenvalues and eigenvectors of a square matrix. Find the eigenvalues and eigenvectors of the matrix A , which is given as $A=\left[\begin{array}{ccc} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{array}\right]$ OR Find for what values of λ and μ the system of linear equations: $\begin{gathered} x+y+z=6 \\ x+2 y+5 z=10 \\ 2 x+3 y+\lambda z=\mu \end{gathered}$ has (i) a unique solution, (ii) no solution, (iii) infinite solutions. Also find the solution for $\lambda=2$ and $\mu=8$.	10	CO3
	SECTION-C (Scan and upload)	= 40	arks)
Q 1	(a) State and prove division algorithm. (b) Use Euclidean algorithm to find greatest common divisor of integers 242 and 758.	20	CO2
Q 2	Define vector space. Show that the set $\mathbb{R}^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}\right\}$ is vector space over the field \mathbb{R}, where \mathbb{R} is the set of real numbers. OR Give the definition of linear transformation. Let $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $F(x, y, z, t)=(x-y+z+t, 2 x-2 y+3 z+4 t, 3 x-3 y+4 z+5 t)$ where \mathbb{R}^{4} and \mathbb{R}^{3} are the vector space over the set of real number \mathbb{R}. (a) Find a basis and the dimension of the image of F. (b) Find a basis and the dimension of the kernel of F.	20	$\mathrm{CO4}$

