

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, January 2022

Course: Algebra Program: B.Sc. (Hons.) Mathematics & Int. B.Sc. & M.Sc. (Mathematics) Course Code: MATH 1040 Semester : I Duration : 03 hrs. Max. Marks: 100

Instructions:

- 1. Section A has 5 questions. All questions are compulsory.
- 2. Section B has 4 questions. All questions are compulsory. Question 4 has internal choice to attempt any one.
- Section C has 2 questions. All questions are compulsory. Question 2 has internal choice to attempt any one.

	SECTION A				
	(Scan and upload) (5Qx 4M = 20 Marks)				
		Marks	COs		
Q 1	For what values of k the complex number $Z_1 = 2e^{\frac{\pi}{3}i}$ and $Z_2 = 2e^{\frac{6k\pi + \pi}{3}i}$ are equal?	4	CO1		
Q 2	Find the modulus, argument, and polar form of the complex number $Z = -3i$.	4	CO1		
Q 3	Using mathematical induction, show that if n is a positive integer then	4	CO2		
	$1 + 2 + \dots + n = \frac{n(n+1)}{2}.$				
Q 4	Find the rank of the matrix $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	4	CO3		
Q 5	Calculate the values of k such that the system of equations x + ky + 3z = 0, $4x + 3y + kz = 0$, $2x + y + 2z = 0has non-trivial solution.$	4	CO3		
	SECTION B (Scan and upload) (4Qx1)	0M = 40	Marks)		
Q 1	Determine all the roots of $(-8 - 8\sqrt{3}i)^{1/4}$ and exhibit them geometrically.		C01		
Q 2	The linear transformation $F: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by F(x, y) = (2x + 3y, 4x - 5y), where \mathbb{R} is the set of real number. Find the matrix representation $[F]_S$ of F relative to the basis $S = \{u_1, u_2\} = \{(1, -2), (2, -5)\}.$	10	CO4		
Q 3	Let the matrix A be given as $A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 3 & 1 & 2 & 1 \\ 4 & 6 & 2 & -4 \\ -6 & 0 & -3 & -4 \end{bmatrix}.$ Check whether the rows of matrix A form a set of independent vectors. If not then find the relation among them.	10	CO3		

Q 4	Define the eigenvalues and eigenvectors of a square matrix. Find the eigenvalues and eigenvectors of the matrix A, which is given as $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}.$	10	CO3
	OR		
	Find for what values of λ and μ the system of linear equations: x + y + z = 6 x + 2y + 5z = 10 $2x + 3y + \lambda z = \mu$ has (i) a unique solution, (ii) no solution, (iii) infinite solutions. Also find the solution for $\lambda = 2$ and $\mu = 8$.		
	$\frac{110}{\text{SECTION-C}}$		
		0 M= 40 I	Marks)
Q 1	 (a) State and prove division algorithm. (b) Use Euclidean algorithm to find greatest common divisor of integers 242 and 758. 	20	CO2
Q 2	Define vector space. Show that the set $\mathbb{R}^n = \{(a_1, a_2,, a_n) \mid a_1, a_2,, a_n \in \mathbb{R}\}$ is vector space over the field \mathbb{R} , where \mathbb{R} is the set of real numbers.	20	CO4
	OR Give the definition of linear transformation. Let $F: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by F(x, y, z, t) = (x - y + z + t, 2x - 2y + 3z + 4t, 3x - 3y + 4z + 5t) where \mathbb{R}^4 and \mathbb{R}^3 are the vector space over the set of real number \mathbb{R} . (a) Find a basis and the dimension of the image of <i>F</i> . (b) Find a basis and the dimension of the kernel of <i>F</i> .		