	UPES UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021		
	SECTION A (Attempt all questions)		
S. No.		Marks	CO
Q1.	Check the continuity at $x=1$ for the function $f(x)= \begin{cases}\frac{\sin x}{x-1}, & x<1 \\ 0, & x=1 \\ \frac{1}{x-1}, & x>1\end{cases}$ If it is a point of discontinuity, identify the type of discontinuity.	[3+1]	CO1
Q2.	Verify Lagrange mean value theorem for the function $f(x)=x^{3}$ in [1,2].	[4]	CO1
Q3.	Find $r^{\text {th }}$ order derivative y_{r} for the function $y=x^{n}$ when $r<n, r=n$ and $r>n$.	[4]	CO2
Q4.	Find the angle of intersection for the curves $y=x^{2}$ and $x=y^{2}$ at $(1,1)$.	[4]	CO3
Q5.	Find horizontal and vertical asymptote(s), if exists, for the curve $y=\frac{e^{3 x}}{x}$.	[4]	CO4
	SECTION B (Q1-Q3 are compulsory. Q4 have internal choices)		
Q1.	If $z=f(x+c y)+g(x-c y)$, show that $z_{y y}=c^{2} z_{x x}$.	[10]	CO5
Q2.	Find the length of tangent, normal, sub-tangent and sub-normal of the following curve $x=a(t+\sin t), y=a(1-\cos t)$ at $t=\frac{\pi}{2}$.	[10]	CO3
Q3.	Obtain all the asymptotes of the curve $\left(x^{2}-y^{2}\right)(x+2 y)+5\left(x^{2}+y^{2}\right)+x+y=0$	[10]	CO4
Q4.	Obtain $n^{t h}$ order derivative y_{n} of the function $y=\frac{1}{(x+2)(2 x+3)}$. Or If $y=\left(\operatorname{Sin}^{-1} x\right)^{2}$, show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$	[10]	CO2

	SECTION C (Q1 is compulsory. Q2a and Q2b both have internal choices)		
Q1	a. Providing necessary information trace the following curve. $x^{3}+y^{3}=3 a x y, a>0$ b. Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Show that the radius of curvature $\rho=\frac{a^{2} b^{2}}{p^{3}}$, where p is perpendicular distance from origin to the tangent at (x, y).	$\begin{aligned} & {[10]} \\ & {[10]} \end{aligned}$	CO4
Q2	a. If $u=\ln \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, show that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=-\frac{9}{(x+y+z)^{2}}$ Given that $\left(x^{3}+y^{3}+z^{3}-3 x y z\right)=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$. OR If $x^{x} y^{y} z^{z}=c$, then show that at $x=y=z, \frac{\partial^{2} z}{\partial x \partial y}=-(x \ln (e x))^{-1}$. b. Consider the function $f(x, y)= \begin{cases}\frac{x^{4}+\left(x^{3}-y^{3}\right)}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0) .\end{cases}$ Find $f_{x}(0,0)$ and $f_{y}(0,0)$. OR Let $f=f\left(\frac{y-x}{x y}, \frac{z-x}{x z}\right)$. Using Chain rule show that $x^{2} \frac{\partial f}{\partial x}+y^{2} \frac{\partial f}{\partial y}+z^{2} \frac{\partial f}{\partial z}=0$	[10] [10]	CO5

