

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Course: Inorganic Chemistry - I
Program: B. Sc. Chemistry

Semester: I
Time 03 hrs.

Course Code: CHEM 1003 Max. Marks: 100

Instruction: Answer all questions. All Questions are mandatory.

	SECTION A				
Each question will carry 4 marks					
S. No.	Question	Marks	CO		
Q 1	Write the complete electron configuration of following atomic numbers.	4	CO1		
	Z = 17, 24, 32, and 55				
Q 2	(i) The first ionization enthalpy of sodium is lower than that of magnesium but its second ionization enthalpy is higher than that of magnesium, explain?	4	CO2		
	(ii) Why HF is a liquid, whereas HCl is a gas?				
Q 3	(i) Why water molecule has bent structure whereas carbon dioxide molecule is linear.	4	CO2		
	(ii) Arrange the following bonds in order of increasing ionic character giving reason.				
	N—H, F—H, C—H and O—H	4	CO3		
Q 4	Predict the hybridisation of each carbon in the molecule given below. Also indicate the total number of sigma and pi bonds in this molecule.	4	C03		
	$ \begin{array}{c} O & O \\ CH = C - C - CH_2 - C \\ 5 & 3 & 2 & 1 & OH \end{array} $				
Q 5	Calculate the percentage ionic character of H-Cl bond in HC1 molecule. If the experimental value of dipole moment (μ) is 1.03 D. Given that $e=4.80 \times 10^{-}10 \ e.s.u.$ and the bond length of H-Cl is 1.27 Å.	4	CO3		
SECTION B					
Each question will carry 10 marks					
Q 6	Derive the Schrodinger wave equation? What is the significance of Ψ and Ψ^2 ?	10	CO1		

	 (i) Find out the value of frequency (v) of radiation emitted when an electron falls from n = 4 to n = 1 orbit in H-atom. Given: Ionization energy (IE) of H-atom = 2.18 x 10⁻¹⁸ J/atom and h = 6.625 x 10⁻³⁴ Js. (ii) Discuss Bohr's model of the atom. How does it account for the hydrogen spectra? What are its limitations? 		
Q 7	(i) Write short notes on (a) Fajan's rule, and (b) Radius Ratio rule	5+5	CO3
	(ii) Calculate the electron affinity of Chlorine using the following data:		
	Enthalpy of formation of NaCl $= -411 \text{ kJ/mole}$		
	Lattice Energy of NaCl = -787 kJ/mole		
	Ionization enthalpy of Na = 496 kJ/mole		
	Dissociation energy (Cl_2) = 121.7 kJ/mole		
	Sublimation energy (Na metal) = 107.7 kJ/mole		
Q 8	(i) Using band theory, explain the conductivity of metals and semiconductors.(ii) What are the postulates of valence bond theory, explain?	10	CO3
Q 9	 (i) What is electronegativity? Explain the factors affecting the magnitude of electronegativity. (ii) Covalent radius of F is 0.72 Å. Calculate its Allred-Rochow's electronegativity to nearest integer. 	10	CO2
	SECTION-C		
I	Each question carries 20 marks		
Q 10	(i) What is effective nuclear charge? How does screening constant (σ) vary in the periodic table? Calculate the effective nuclear charge of the valence electron for atomic number 19 and 23.	10+10	CO2
	(ii) In each of the following pairs of compounds, which one is more covalent and why?		
	(a) AgCl, AgI (b) BeCl ₂ , MgCl ₂ (c) SnCl ₂ , SnCl ₄ (d) CuO, CuS OR		
	 (i) Deduce the shapes of following molecules using VSEPR theory and predict the hybridization and bond angle in each case. (a) BF₃ (b) NH₃ (c) H₂O (d) ICℓ₂⁻ (e) SO₄²⁻. 		
	(ii) Explain the formation of ionic bonding and covalent bonding. Compare the properties of ionic compounds and covalent compounds.		
Q 11	(i) Draw molecular orbital diagram of CO and NO. Calculate their bond order and comment on their magnetic property.(ii) What is hydrogen bonding and its significance? Using examples explain different types of hydrogen bonding.	12+8	CO3