Name: Enrolment No:			
Progr Cours Cour	\left. UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, 2021 $\right)$ Semester		
SECTION A (5Q x 4M= 20M)			
S. No.	All Questions are compulsory.	Marks	CO
Q 1	Write major applications of a p-n junction diode? Discuss its important properties/behavior of V-I curve during reverse bias operation.	4	CO1
Q 2	Perform the following number system conversion: $(1101001101.1010)_{2}=\left(_\right)_{8}=\left(_\right)_{16}$	4	CO2
Q 3	Determine the current across the load of $4+\mathrm{j} 3$ ohm connected to 230 V power supply of 50 Hz frequency.	4	CO2
Q 4	Determine the Node volatge $\mathbf{V b}$ for the givem network shon in Figure 1. Figure 1.	4	CO3
Q 5	For $i=100 \operatorname{Sin}\left(157 t+60^{\circ}\right), A m p$, Determine the RMS current, Average current, Frequency and phase of the current source.	4	CO4
SECTION B (4X10 = Marks)			
Q6	Sketch the input-output charateristcs alongwith the opearting regions of common emitter NPN configuration?	10	CO2
Q7 (a)	For a series RL circuit obtain the effective impedance and draw the phasor diagram for the same. A $230 \mathrm{~V}, 50 \mathrm{HZ}$ sinusoidal supply is connected across a (i) resistance of 25Ω, (ii)	5	CO3

(b)	inductance of 0.5 H , and (iii) capacitance of $100 \mu \mathrm{H}$. Determine the impedance and voltage across each elements.	5	
Q8	Determine the output Boolean expression for the given logic gate circuit shown in Figure 2. Fig 2	10	CO3
Q 9	Determine the current through 1Ω resistance in Figure 3 using Thevenin's theorem. Figure 3. OR Using Norton theorem, Find the current in 8 ohm resistor of the network shown in Figure. 4 Figure 4.	10	CO1
SECTION-C ($2 \times 20 \mathrm{M}=40 \mathrm{M}$)			
Q 10	Design a full adder circuit from combination of half adders. Also draw the truth table for the full adder to verify the circuit.	20	

			CO3
Q11 A B (i) (ii)	(i)Design a complete circuit schematic for a full-wave bridge rectifier that gives a DC output of $52 \mathrm{~V}, 100 \mathrm{~Hz}$ for an AC input of $230 \mathrm{~V}, 50 \mathrm{~Hz}$. (ii)For the transistor configuration shown in figure 2 below identify the type of biasing. Determine the operating point of the transistor, if $\mathrm{V}_{\text {CEsat }}=0.5 \mathrm{~V}$ Figure 5 OR Draw and explain negative and positive series clipper circuits with their input and output voltage waveforms, respectively. In a bridge full wave rectifier circuit shown in Figure (6), assume Load resistance $R_{L}=500 \Omega$, uses a transformer turn ratio $=5: 1$, forward resistance $\left(R_{f}\right)$ of each diode is 1Ω. Figure (6) Determine: (1) maximum current (2) Average current or DC current (3) RMS current or AC current (4) Output DC voltage (5) AC and DC power	10	CO4

