N	<u> </u>	-	^	
17	a	ш	•	-

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, DECEMBER 2021

Course: Mathematics-I
Program: B.Tech. (SOE)
Course Code: MATH 1026
Semester: I
Time: 03 hrs.
Max. Marks: 100

Instructions: All questions are compulsory.

SECTION A (Each question carries 4 marks)

S. No.		Marks
Q1	If $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$, find the eigen values of $A^2 - 2A + I$.	CO1
Q2	Compute the Jacobian $J\left(\frac{u,v}{x,y}\right)$ if $x = u(1-v), y = uv$.	CO2
Q3	If $r^2 = x^2 + y^2 + z^2$, then prove that $\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} + \frac{\partial^2 r}{\partial z^2} = \frac{2}{r}$.	CO2
Q4	Expand the function $f(x) = \cos x$ about $x = \frac{\pi}{4}$ in Taylor's series.	CO4
Q5	Find the value of a if the vector field $\vec{F} = (2x^2y + yz)\hat{\imath} + (xy^2 - xz^2)\hat{\jmath} + (axyz - 2x^2y^2)\hat{k}$ is solenoidal.	CO3
	SECTION B (Each question carries 10 marks)	
01	a Reduce the quadratic form $\Omega(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2 + 2x_2x_3$ to the	

Q1	 a. Reduce the quadratic form Q(x₁, x₂, x₃) = x₁² + 2x₂² + x₃² - 2x₁x₂ + 2x₂x₃ to the canonical form through an orthogonal transformation. b. Find the rank, signature, index and the nature of this quadratic form. 	CO1
Q2	Verify Green's theorem in $x - y$ plane for $\oint_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$, where C is the boundary of the region bounded by $x = 0, y = 0, x + y = 1$.	CO3
Q3	Evaluate the total work done in displacing a particle along the straight line joining the points $(0,0,0)$ to $(1,1,1)$ under the force field $\vec{F} = (3x^2 + 6y)\hat{\imath} - 14yz\hat{\jmath} + 20xz^2\hat{k}$.	CO3
Q4	Find the Fourier series for the periodic function $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ OR Find the half range cosine series of $f(x) = x$, $0 \le x \le \pi$.	CO4

SECTION-C (This question carries 20 marks)		
Q 1	a. Evaluate $\int_0^1 \int_x^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$ by changing the order of integration.	
	b. If $u = \sin^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \tan u$.	CO2
Q 2	Verify divergence theorem for $\vec{F} = x^2\hat{\imath} + z\hat{\jmath} + yz\hat{k}$ over the cube formed by the planes $x = -1$, $x = 1, y = -1, y = 1, z = -1, z = 1$.	
	OR	
	Using Stoke's theorem evaluate $\oint_C (x+y)dx + (2x-z)dy + (y+z)dz$, where C is the boundary of the triangle with vertices $(2,0,0)$, $(0,3,0)$ and $(0,0,6)$.	