| Name: <br> Enrolment No: |  |  |
| :---: | :---: | :---: |
| Cours <br> Progr <br> Cours <br> Instru | \left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES  <br> End Semester Examination, DECEMBER 2021 $\right]$ Semester: I <br> Mathematics-I Time: 03 hrs. <br> $:$ B.Tech. (SOE) Max. Marks: 100 <br> Code: MATH 1026  <br> ons: All questions are compulsory.  |  |
| SECTION A (Each question carries 4 marks) |  |  |
| S. No. |  | Marks |
| Q1 | If $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$, find the eigen values of $A^{2}-2 A+I$. | CO1 |
| Q2 | Compute the Jacobian $J\left(\frac{u, v}{x, y}\right)$ if $x=u(1-v), y=u v$. | CO 2 |
| Q3 | If $r^{2}=x^{2}+y^{2}+z^{2}$, then prove that $\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}+\frac{\partial^{2} r}{\partial z^{2}}=\frac{2}{r}$. | $\mathrm{CO2}$ |
| Q4 | Expand the function $f(\mathrm{x})=\cos x$ about $x=\frac{\pi}{4}$ in Taylor's series. | $\mathrm{CO4}$ |
| Q5 | Find the value of $a$ if the vector field $\vec{F}=\left(2 x^{2} y+y z\right) \hat{\imath}+\left(x y^{2}-x z^{2}\right) \hat{\jmath}+\left(a x y z-2 x^{2} y^{2}\right) \hat{k}$ is solenoidal. | CO 3 |
| SECTION B (Each question carries 10 marks) |  |  |
| Q1 | a. Reduce the quadratic form $Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}+2 x_{2} x_{3}$ to the canonical form through an orthogonal transformation. <br> b. Find the rank, signature, index and the nature of this quadratic form. | CO1 |
| Q2 | Verify Green's theorem in $x-y$ plane for $\oint_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$, where C is the boundary of the region bounded by $x=0, y=0, x+y=1$. | CO 3 |
| Q3 | Evaluate the total work done in displacing a particle along the straight line joining the points $(0,0,0)$ to $(1,1,1)$ under the force field $\vec{F}=\left(3 x^{2}+6 y\right) \hat{\imath}-14 y z \hat{\jmath}+20 x z^{2} \hat{k}$. | CO3 |
| Q4 | Find the Fourier series for the periodic function $f(x)=\left\{\begin{array}{cc}-\pi, & -\pi<x<0 \\ x, & 0<x<\pi\end{array}\right.$ <br> OR <br> Find the half range cosine series of $f(x)=x, 0 \leq x \leq \pi$. | CO4 |

## SECTION-C (This question carries 20 marks)

| Q 1 | a. Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$ by changing the order of integration. <br> b. If $u=\sin ^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$, then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$. | $\mathbf{C O 2}$ |
| :--- | :--- | :--- |
| Q 2 | Verify divergence theorem for $\vec{F}=x^{2} \hat{\imath}+z \hat{\jmath}+y z \hat{k}$ over the cube formed by the planes $x=-1$, <br> $x=1, y=-1, y=1, z=-1, z=1$. | OR |
|  | Using Stoke's theorem evaluate $\oint_{C}(x+y) d x+(2 x-z) d y+(y+z) d z$, where $C$ is the <br> boundary of the triangle with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$. | $\mathbf{C O 3}$ |

