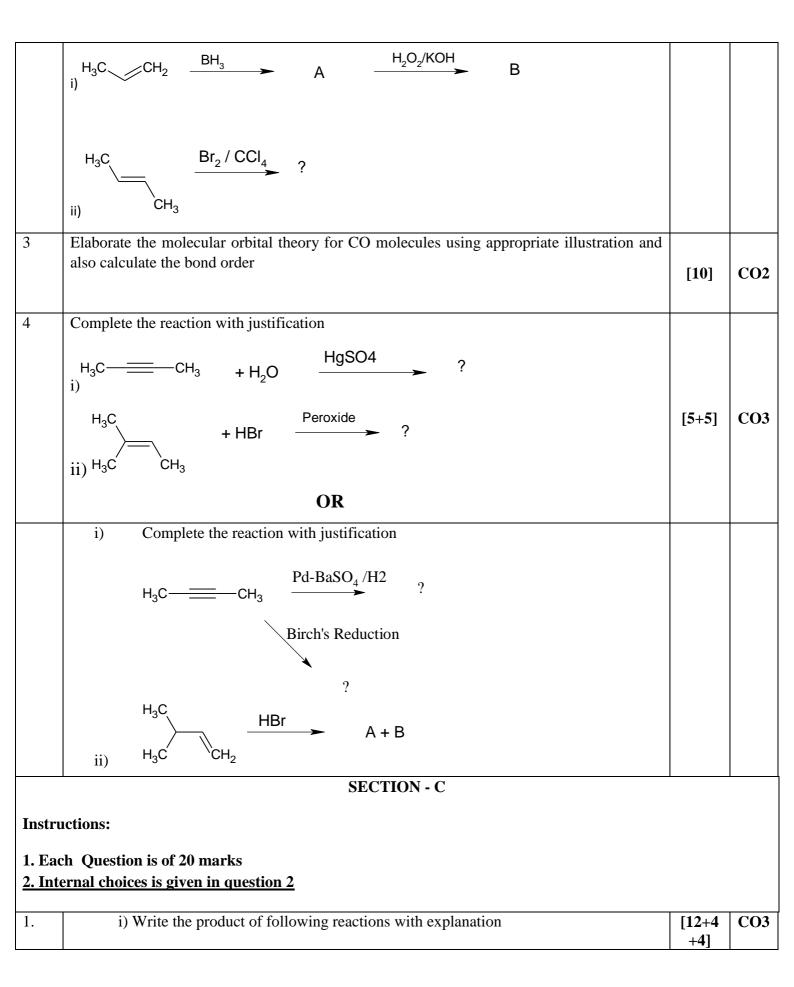
Enrolment No:

Course:CHEM-1007G (Chemistry)(End Semester Examination Dec 2021)Programme:B.Sc (H) Geology/MathematicsSemester: ICourse Name:Atomic structure, bonding, General Organic chemistry & aliphatic hydrocarbonsTime:03 hrs.Max. Marks:100

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

- 1) Write your enrolment number on the top left of the question paper
- 2) Do not write anything on the question paper except your enrolment number
- 3) Attempt all part of a question at one place only


Section - A

1. Each Question will carry 4 Marks

2. Answer should be short

3. You have to very careful to write the answer.

1.	Discuss Enantiomers and Diastereomers	[4]	CO1	
2.	Assign R and S for the following compound $H \rightarrow H \rightarrow$	[4]	CO1	
3.	Explain Saytzeff's and Markovnikov's rule	[4]	CO1	
4.	Write the main features of molecular orbital theory	[4]	CO2	
5.	What do you mean by dual character of matter and discuss it with De Broglie's equation	[4]	CO1	
SECTION-B				
Instructions: 1. Each question will carry 10 marks 2. Write short/brief notes of 1-2 page answer. 3. Internal Choice is given in question 4				
1	Explain the different conformations of butane. How will you account for difference in their relative stability	[10]	CO3	
2	Complete the reaction	[5+5]	CO3	

	H_3C $H_2 \longrightarrow ?$		
	H_3C ————————————————————————————————————		
	H_3C \longrightarrow $i)$ KMnO4 , KOH , heat H_3C \longrightarrow ? H_3C $ii)$ H_3O^+		
	$H_3C \longrightarrow CH \longrightarrow Alkaline KMnO_4 ?$		
	H_3C CH_2 O_3 / Zn ?		
	$HO H CH_3 H^+ ?$ $H_3C H H$		
	ii) Explain pinacole-pinacolone rearrangement with example		
	iii) Mention CIP rule for assigning priority to atoms		
2.	 Using VSEPR theory, predict and draw the shapes of the following molecules BF₃, PCl₅, SF₄ and NH₃ 	[8+8+ 4]	CO2
	ii) Write molecular orbital configuration of the species O_2 , O_2^+ , O_2^- and O_2^{-2}		
	 and calculate their bond order iii) Give the sequence in which the energy levels in an atom are filled with electrons and give electronic configuration for the elements having atomic number 11 and 17 		
	OR		
	 i) Elaborate VSEPR(valence shell electron pair repulsion) theory with example ii) Outline a Born-Haber cycle for the formation of an ionic compound by taking example of sodium chloride 		
	iii) Explain the paramagnetic character of oxygen with the help of molecular orbital theory		
	•		