Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, 2021

Programme Name: B. Tech- APE, ASE, ECE, Electrical Engg, RSE

Course Name : Basic Electrical and Electronics Engineering : 03 hrs

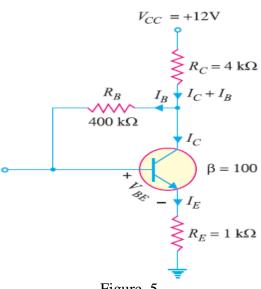
Course Code :ECEG-1004 Max. Marks : 100

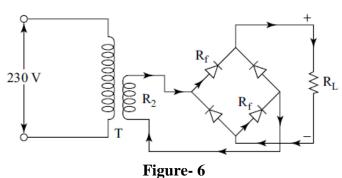
NOTE: Attempt all the sections.

SECTION A $(5Q\times4M=20M)$

S. No.	All Questions are compulsory.	Marks	CO
Q 1	Write major applications of a p-n junction diode? Discuss its important properties/behavior of V-I curve during reverse bias operation.	4	CO1
Q 2	Perform the following number system conversion: $(1101001101.1010)_2 = (_)_8 = (_)_{16}$	4	CO2
Q 3	Determine the current across the load of 4 + j3 ohm connected to 230 V power supply of 50 Hz frequency.	4	CO2
Q 4	Determine the Node volatge \mathbf{Vb} for the given network shon in Figure 1. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	CO3
Q 5	For $i = 100 Sin (157t + 60^{\circ})$, Amp, Determine the RMS current, Average current, Frequency and phase of the current source.	4	CO4
	SECTION B $(4\times10 = 40\text{Marks})$		
Q6	Sketch the input-output charateristcs alongwith the opearting regions of common emitter NPN configuration?	10	CO2
Q7	 Attempt both the parts (a) For a series RL circuit obtain the effective impedance and draw the phasor diagram for the same. (b) A 230 V, 50 HZ sinusoidal supply is connected across a (i) resistance of 25 Ω, (ii) inductance of 0.5 H, and (iii) capacitance of 100 μH. Determine the impedance and voltage across each elements. 	5+5	CO3

Q8	Determine the output Boolean expression for the given logic gate circuit shown in Figure 2. Ao Bo Figure 2	10	CO3		
Q 9	Determine the current through 1Ω resistance in Figure 3 using Thevenin's theorem. Figure 3. OR Using Norton theorem, Find the current in 8 ohm resistor of the network shown in Figure.4 $ \frac{4\Omega}{40V} = \frac{5\Omega}{6\Omega} = \frac{8\Omega}{8} $ Figure-4	10	CO1		
SECTION-C $(2x20 M = 40 M)$					
Q 10	Design a full adder circuit from combination of half adders. Also draw the truth table for the full adder to verify the circuit.	20	CO3		
Q11	 Attempt both the parts (a) Design a complete circuit schematic for a full-wave bridge rectifier that gives a DC output of 52 V, 100 Hz for an AC input of 230 V, 50 Hz. (b) For the transistor configuration shown in figure 2 below identify the type of biasing. Determine the operating point of the transistor, if V_{CEsat} = 0.5 V 	10+10	CO4		




Figure 5

OR

Attempt both the parts

- (a) Draw and explain negative and positive series clipper circuits with their input and output voltage waveforms, respectively.
- (b) In a bridge full wave rectifier circuit shown in Figure (6), assume Load resistance R_L = 500 Ω , uses a transformer turn ratio= 5:1, forward resistance (R_f) of each diode is 1 Ω .

10+10

Determine:

- (i) maximum current
- (ii) Average current or DC current
- (iii) RMS current or AC current
- (iv) Output DC voltage
- (v) AC and DC power