

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Course: Generic Elective (Matrices) : I Semester Program: B.Sc. (H) Physics/Chemistry/Geology Duration : 03 hrs. **Course Code: MATH 1029** Max. Marks: 100

Instru	ections:		
	SECTION A (Scan and upload) (5Q)	x 4M = 20	Morks)
	(Scan and upload) (SQ2	Marks	COs
Q 1	By mathematical induction, prove that if $A = \begin{bmatrix} 11 & -25 \\ 4 & -9 \end{bmatrix}$, then $A^n = \begin{bmatrix} 1+10n & -25n \\ 4n & 1-10n \end{bmatrix}$	Wiaiks	CO1
Q 2	Determine the values of k for which the system of equations $(3k-8)x + 3y + 3z = 0$ $3x + (3k-8)y + 3z = 0$ $3x + 3y + (3k-8)z = 0$		CO2
Q 3	Discuss, the values of m for which the vectors $u_1 = (m, 4, 0), u_1 = (1, -1, 8) \& u_3 = (0, -1, m)$ are linearly dependent.		CO3
Q 4	Consider the matrix $\begin{bmatrix} -2 & 0 & 1 \\ -5 & 3 & a \\ 4 & -2 & -1 \end{bmatrix}$ for some variable 'a' which will prove that A has eigen values $0, 3, -3$.		CO4
Q 5	Check whether the following matrix nilpotent? If so, what is its degree? $A = \begin{bmatrix} 0 & 3 & 5 & 7 \\ 0 & 0 & 4 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$		CO1
	SECTION B	•	-
	(Scan and upload) (4Qx1	0M = 40	Marks)
Q1	State and prove Cayley Hamilton theorem.		CO4
Q 2	Reduce the following matrix into its normal form and hence find its rank. $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$		CO2
Q 3	Explain LU decomposition also apply Cholesky Decomposition method to decompose the following matrix $A = \begin{bmatrix} 4 & 12 & -16 \\ 12 & 37 & -43 \\ -16 & -43 & 98 \end{bmatrix}$		CO3
Q 4	Evaluate the characteristic and minimal polynomial of the matrix $A = \begin{bmatrix} 7 & 2 & 0 & 0 & 0 \\ 0 & 7 & 2 & 0 & 0 \\ 0 & 0 & 7 & 1 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{bmatrix}$		CO5

	SECTION-C	
	(Scan and upload) (2Qx	20M= 40 Marks)
Q 1	Verify Cayley Hamilton theorem also find the matrix P which transforms the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ to the diagonal form. Hence calculate A^4 .	CO4
Q 2	Differentiate between Dolittle, Crout's and Cholesky methods of LU decomposition also apply Crout's method to find the solution of following system of equations: $2x_1 - 4x_2 + 3x_3 = 4$ $6x_1 + 2x_2 - x_3 = 10$ $-2x_1 + 6x_2 - 2x_3 = -6$	CO3