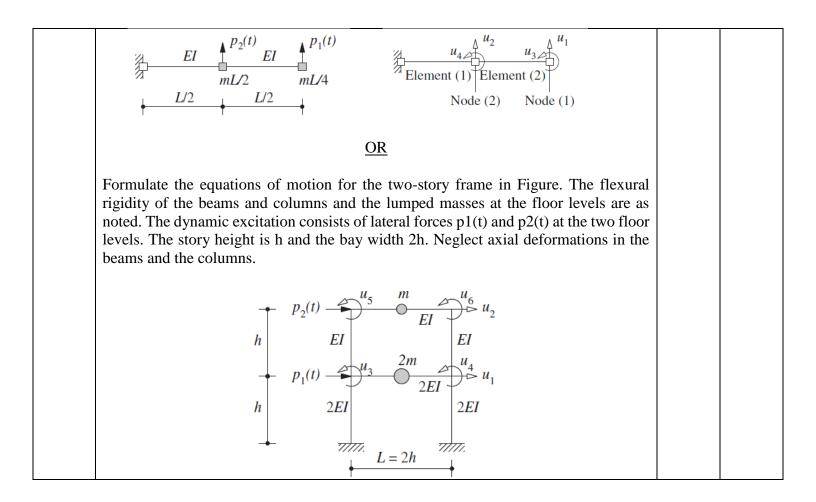
Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2021

Structural Dynamics Course: Program: M.Tech. Structural Engineering


Semester: I Time 03 hrs. Max. Marks: 100

Course Code: CIVL 7024 Instructions:

(Internal choice is available for O 6 and O 11)

S. No.		Marks	CO
Q 1	Distinguish between free and forced vibration.	4	CO3
$\frac{Q}{Q}$	What is the difference between constant mass and lumped mass?	4	C03
Q 2	what is the unreference between constant mass and fumped mass?	4	COS
Q 3	Define generalized system properties.	4	CO3
Q 4	What is mean by mode shape? Briefly explain with help of figures.	4	CO4
Q 5	How resonance occurs in the MDOF Structure.	4	CO2
	SECTION B		
	through a height h and sticks to m1 without rebound Determine the subsequent motion u(t) measured from the static equilibrium position of m1 and k. $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	10	CO3

Q 7	In a forced vibration test under harmonic excitation it was noted that the amplitude of motion at resonance was exactly four times the amplitude at an excitation frequency 20% higher than the resonant frequency. Determine the damping ratio of the system.	10	CO4
Q 8	A heavy table is supported by flat steel legs (Figure). Its natural period in lateral vibration is 0.5 sec. When a 50-lb plate is clamped to its surface, the natural period in lateral vibration is lengthened to 0.75 sec. What are the weight and the lateral stiffness of the table? $T_n = 0.5 \text{ sec}$ $T_n = 0.75 \text{ sec}$	10	CO4
Q 9	The vertical suspension system of an automobile is idealized as a viscously damped SDF system. Under the 3000-lb weight of the car the suspension system deflects 2 in. The suspension is designed to be critically damped. (a) Calculate the damping and stiffness coefficients of the suspension. (b) With four 160-lb passengers in the car, what is the effective damping ratio? (c) Calculate the natural vibration frequency for case (b).	10	CO3
1			
Q 10	An SDF system with natural period Tn and damping ratio ζ is subjected to the periodic force shown in Figure with an amplitude Po and period T ₀ . (a) Expand the forcing function in its Fourier series. (b) Determine the steady-state response of an undamped system. For what values of T0 is the solution indeterminate? (c) For T ₀ /Tn = 2, determine and plot the response to individual terms in the Fourier series. How many terms are necessary to obtain reasonable convergence of the series solution? p_{o} p_{o} p_{o} p_{o} T_{o} T_{o} T_{o} T_{o} T_{o} T_{o}	20	CO1
Q 11	A massless cantilever beam of length L supports two lumped masses mL/2 and mL/4 at the midpoint and free end as shown in figure a. The flexural rigidity of the uniform beam is EI. With the four DOFs chosen as shown in Figure b and the applied forces p1(t) and p2(t), formulate the equations of motion of the system. Axial and shear deformations in the beam are neglected. a) b)	20	CO2

