

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

**End Semester Examination, January 2022** 

Course: Algebra

Program: B.Sc. (Hons.) Mathematics & Int. B.Sc. & M.Sc. (Mathematics)

Course Code: MATH 1040

Semester: I

Duration: 03 hrs.

Max. Marks: 100

## **Instructions:**

- 1. Section A has 5 questions. All questions are compulsory.
- 2. Section B has 4 questions. All questions are compulsory. Question 4 has internal choice to attempt any one.
- 3. Section C has 2 questions. All questions are compulsory. Question 2 has internal choice to attempt any one.

|     | attempt any one.                                                                                                                                             |                    |        |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|
|     | SECTION A                                                                                                                                                    | 43.5               |        |
|     | (Scan and upload) (5Qx                                                                                                                                       | 4M = 20            |        |
| 0.1 | a (ha) a                                                                                                                                                     | Marks              |        |
| Q1  | For what values of $k$ the complex number $Z_1 = 2e^{\frac{\pi}{3}i}$ and $Z_2 = 2e^{\frac{6k\pi + \pi}{3}i}$ are equal?                                     | 4                  | CO1    |
| Q 2 | Find the modulus, argument, and polar form of the complex number $Z = -3i$ .                                                                                 | 4                  | CO1    |
| Q 3 | Using mathematical induction, show that if $n$ is a positive integer then                                                                                    | 4                  | CO2    |
|     | $1 + 2 + \dots + n = \frac{n(n+1)}{2}.$                                                                                                                      |                    |        |
| Q 4 | Find the rank of the matrix                                                                                                                                  | 4                  | CO3    |
|     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                        |                    |        |
|     | $\begin{bmatrix} 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \end{bmatrix}$                                                                             |                    |        |
| Q 5 | Calculate the values of $k$ such that the system of equations $x + ky + 3z = 0$ , $4x + 3y + kz = 0$ , $2x + y + 2z = 0$ has non-trivial solution.           | 4                  | CO3    |
|     | SECTION B                                                                                                                                                    |                    |        |
|     | (Scan and upload) (4Qx1                                                                                                                                      | $0\mathbf{M} = 40$ | Marks) |
| Q 1 | Determine all the roots of $(-8 - 8\sqrt{3}i)^{1/4}$ and exhibit them geometrically.                                                                         | 10                 | CO1    |
| Q 2 | The linear transformation $F: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by                                                                                   | 10                 | CO4    |
|     | F(x,y) = (2x + 3y, 4x - 5y),                                                                                                                                 |                    |        |
|     | where $\mathbb{R}$ is the set of real number. Find the matrix representation $[F]_S$ of $F$ relative to the basis $S = \{u_1, u_2\} = \{(1, -2), (2, -5)\}.$ |                    |        |
| Q 3 | Let the matrix A be given as                                                                                                                                 | 10                 | CO3    |
|     | $A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 3 & 1 & 2 & 1 \\ 4 & 6 & 2 & -4 \\ -6 & 0 & -3 & -4 \end{bmatrix}.$                                                    |                    |        |
|     | Check whether the rows of matrix A form a set of independent vectors. It not then find the relation among them.                                              |                    |        |

| Q 4 | Define the eigenvalues and eigenvectors of a square matrix. Find the eigenvalues and eigenvectors of the matrix A, which is given as $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}.$          | 10       | CO3    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|
|     | OR                                                                                                                                                                                                                          |          |        |
|     | Find for what values of $\lambda$ and $\mu$ the system of linear equations: $x + y + z = 6$ $x + 2y + 5z = 10$ $2x + 3y + \lambda z = \mu$ has (i) a unique solution, (ii) no solution, (iii) infinite solutions. Also find |          |        |
|     | the solution for $\lambda = 2$ and $\mu = 8$ .                                                                                                                                                                              |          |        |
|     | SECTION-C<br>(Scan and upload) (2Qx 20                                                                                                                                                                                      | )M= 40 I | Marks) |
| Q1  | <ul><li>(a) State and prove division algorithm.</li><li>(b) Use Euclidean algorithm to find greatest common divisor of integers 242 and</li></ul>                                                                           | 20       | CO2    |
|     | 1758.                                                                                                                                                                                                                       |          |        |
| Q 2 | 758.  Define vector space.  Show that the set $\mathbb{R}^n = \{(a_1, a_2,, a_n) \mid a_1, a_2,, a_n \in \mathbb{R}\}$ is vector space over the field $\mathbb{R}$ , where $\mathbb{R}$ is the set of real numbers.         | 20       | CO4    |