Name: Enrolment No:			
Course Progra Course Instruc	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2021 Chemical Engineering Computing \quad Semester: I		
SECTION A (20 M)			
S. No.		$\begin{gathered} \text { Mar } \\ \text { ks } \end{gathered}$	CO
Q1	Why LU decomposition is better than Gauss Elimination method for solving the system of linear equations in specific case ?	4	CO1
Q2	Suppose we are in the three dimensional space, and the three planes in the row picture do not intersect at a common point of intersection. What are the various possibilities for the infinite solutions and no solution. Demonstrate with the help of suitable examples of the equation of planes.	4	CO1
Q3	What is the criterion of convergence for the Gauss Elimination and LU decomposition method?	4	CO2
Q4	What is the criterion of convergence for the the fixed point iteration method for system of non-linear equations ?	4	$\mathrm{CO2}$
Q5	Write the names of two open methods to solve non-linear equation. Compare and contrast the two methods in terms of their convergence.	4	CO1
SECTION B (50 M)			
Q6	It is known that the root of the equation $\cos x=x e^{x}$ lie in the interval $(0,1)$. Estimate the the value of x with an accuracy of 0.05 using bisection method.	10	CO 3
Q7	Using finite difference (central difference in space) method to solve the differential equation $\frac{d^{2} y}{d x^{2}}-2 y=x^{2}-2 x-4, \quad 0<x<1$	10	CO 3

	With the Dirichlet boundary conditions $\begin{aligned} & \text { At } x=0, \quad y=0 \\ & \text { At } x=1, \quad y=-1 \end{aligned}$ If $\mathrm{x}=1 \mathrm{~m}$. Take $\Delta x=1 / 3$ to find the values of y at all nodes.		
Q8	Draw the column picture (Linear combination) for the system of linear equations, $\mathrm{Ax}=\mathrm{b}$. $\text { Where } \mathrm{A}=\left[\begin{array}{ccc} 1 & 10 & -1 \\ 2 & 3 & 20 \\ 10 & -1 & 2 \end{array}\right], \mathrm{b}=\left[\begin{array}{l} 3 \\ 7 \\ 4 \end{array}\right] \text { and } \mathrm{x}=\left[\begin{array}{lll} x & y & z \end{array}\right]^{T}$ Do the linear combinations of these column fill the entire 3D-space? Solve them using LU decomposition method. OR Solve the system of Non-linear equations by Newton Raphson Method. $\begin{aligned} & f_{1}\left(x_{1}, x_{2}\right)=3 x_{1}^{3}+4 x_{2}^{2}-145=0 \\ & f_{2}\left(x_{1}, x_{2}\right)=4 x_{1}^{2}-x_{2}^{3}+28=0 \end{aligned}$	10	CO 3
Q9	Fit a second order polynomial using least square method to the following data	10	CO 3
SECTION C (40 M)			
Q10	Consider a series reaction $A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C$ carried out in a batch reactor. The differential equation for component A is, $\frac{d C_{A}}{d t}=-k_{1} C_{A}$ for component B is, $\frac{d C_{B}}{d t}=k_{1} C_{A}-k_{2} C_{B}$ and for component C ,	20	CO4

	$\frac{d C_{c}}{d t}=k_{2} C_{B}$ The initial condition is: at $\mathrm{t}=0, C_{A}=1, C_{B}=0$, and $C_{c}=0$. The rate constants are $k_{1}=k_{2}=1$ sec^{-1}. Use the fourth order Runge - Kutta method to determine the concentration of A, B and C up to 4 sec, using step size of 2 sec .		
Q11	A fin of diameter 0.02 m and length 0.05 m is attached to a wall. The temperature of the wall is $320^{\circ} \mathrm{C}$. The thermal conductivity of the fin material and the heat transfer coefficient from the fin to the surrounding are $50 \mathrm{~W} / \mathrm{m}-\mathrm{K}$ and $100 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$. The temperature of the surrounding is $20^{\circ} \mathrm{C}$. The governing equation is $-\frac{d^{2} \theta}{d x^{2}}+\frac{h P}{k A} \theta=0$, where $\theta=T-T_{\text {surr }}, \mathrm{P}$ is the perimeter and A is the area of cross section of the fin. The boundary condition at $\mathrm{x}=$ 0.05 m is $\frac{d \theta}{d x}+\frac{h}{k} \theta=0$. Formulate the problem into the system of linear equation to find the temperature of the fin at $x=0.0124,0.025,0.0375$ and 0.05 . You are not required to obtain the solution.	20	CO4

