Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2021

Course: Chemical Engineering Computing Program: M. Tech (Chemical Engineering) Course Code: CHPD 7002

Semester: I Time: 3 hrs Max. Marks: 100

Instructions: (1) Answer **ALL** questions

(2) Assume the appropriate value of missing data, if any.

	SECTION A (20 M)		
S. No.		Mar ks	СО
Q1	Why LU decomposition is better than Gauss Elimination method for solving the system of linear equations in specific case ?	4	CO1
Q2	Suppose we are in the three dimensional space, and the three planes in the row picture do not intersect at a common point of intersection. What are the various possibilities for the infinite solutions and no solution. Demonstrate with the help of suitable examples of the equation of planes.	4	CO1
Q3	What is the criterion of convergence for the Gauss Elimination and LU decomposition method ?	4	CO2
Q4	What is the criterion of convergence for the the fixed point iteration method for system of non-linear equations ?	4	CO2
Q5	Write the names of two open methods to solve non-linear equation. Compare and contrast the two methods in terms of their convergence.	4	CO1
	SECTION B (50 M)		
Q6	It is known that the root of the equation $\cos x = xe^x$ lie in the interval (0, 1). Estimate the the value of x with an accuracy of 0.05 using bisection method.	10	CO3
Q7	Using finite difference (central difference in space) method to solve the differential equation $\frac{d^2y}{dx^2} - 2y = x^2 - 2x - 4$, $0 < x < 1$	10	CO3

ORSolve the system of Non-linear equations by Newton Raphson Method. $f_1(x_1, x_2) = 3x_1^3 + 4x_2^2 - 145 = 0$ $f_2(x_1, x_2) = 4x_1^2 - x_2^3 + 28 = 0$ Q9Fit a second order polynomial using least square method to the following data $\boxed{\frac{x 0 1 2 3 4 5}{y 2.1 7.7 13.6 27.2 40.9 61.1}}$ SECTION C (40 M)Q10Consider a series reaction $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ carried out in a batch reactor. The differential equation for component A is, $\frac{dC_A}{dt} = -k_1C_A$ for component B is,20		With t	he Dirichle	t boundar	y conditio	ons					
Where $A = \begin{bmatrix} 1 & 10 & -1 \\ 2 & 3 & 20 \\ 10 & -1 & 2 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$ and $x = \begin{bmatrix} x & y & z \end{bmatrix}^T$ Image: Dot the linear combinations of these column fill the entire 3D-space? Solve them using LU decomposition method.Image: Dot the linear combinations of these column fill the entire 3D-space? Solve them using LU decomposition method.ORSolve the system of Non-linear equations by Newton Raphson Method. $f_1(x_1, x_2) = 3x_1^3 + 4x_2^2 - 145 = 0$ $f_2(x_1, x_2) = 4x_1^2 - x_2^3 + 28 = 0$ Q9Fit a second order polynomial using least square method to the following data $x \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ y \ 2.1 \ 7.7 \ 13.6 \ 27.2 \ 40.9 \ 61.1 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \$		At $x = 1$, $y = -1$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q8	Draw the column picture (Linear combination) for the system of linear equations, Ax =									
decomposition method.I0ORSolve the system of Non-linear equations by Newton Raphson Method. $f_1(x_1, x_2) = 3x_1^3 + 4x_2^2 - 145 = 0$ $f_2(x_1, x_2) = 4x_1^2 - x_2^3 + 28 = 0$ Q9Fit a second order polynomial using least square method to the following data $\overline{x 0 1 2 3 4 5}$ $y 2.1 7.7 13.6 27.2 40.9 61.1$ SECTION C (40 M)Q10Consider a series reaction $A \xrightarrow{-k_1} B \xrightarrow{-k_2} C$ carried out in a batch reactor. The differential equation for component A is, $\frac{dC_A}{dt} = -k_1C_A$ for component B is,		Where A= $\begin{bmatrix} 1 & 10 & -1 \\ 2 & 3 & 20 \\ 10 & -1 & 2 \end{bmatrix}$, b= $\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$ and x= $\begin{bmatrix} x & y & z \end{bmatrix}^T$									
Solve the system of Non-linear equations by Newton Raphson Method. $f_1(x_1, x_2) = 3x_1^3 + 4x_2^2 - 145 = 0$ $f_2(x_1, x_2) = 4x_1^2 - x_2^3 + 28 = 0$ Q9Fit a second order polynomial using least square method to the following data $\boxed{\frac{x 0 1 2 3 4 5}{y 2.1 7.7 13.6 27.2 40.9 61.1}}$ SECTION C (40 M) Q10Consider a series reaction $A - \frac{k_1}{b} \rightarrow B - \frac{k_2}{b} \rightarrow C$ carried out in a batch reactor. The differential equation for component A is, $\frac{dC_A}{dt} = -k_1C_A$ for component B is,20								10	CO3		
$f_{1}(x_{1}, x_{2}) = 3x_{1}^{3} + 4x_{2}^{2} - 145 = 0$ $f_{2}(x_{1}, x_{2}) = 4x_{1}^{2} - x_{2}^{3} + 28 = 0$ Q9 Fit a second order polynomial using least square method to the following data $\boxed{\frac{x 0 1 2 3 4 5}{y 2.1 7.7 13.6 27.2 40.9 61.1}}$ 10 $\frac{\text{SECTION C (40 M)}}{210}$ Q10 Consider a series reaction $A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C$ carried out in a batch reactor. The differential equation for component A is, $\frac{dC_{A}}{dt} = -k_{1}C_{A}$ for component B is, 20		OR									
$f_{2}(x_{1}, x_{2}) = 4x_{1}^{2} - x_{2}^{3} + 28 = 0$ Q9 Fit a second order polynomial using least square method to the following data $\frac{x 0 1 2 3 4 5}{y 2.1 7.7 13.6 27.2 40.9 61.1}$ 10 $SECTION C (40 M)$ Q10 Consider a series reaction $A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C$ carried out in a batch reactor. The differential equation for component A is, $\frac{dC_{A}}{dt} = -k_{1}C_{A}$ for component B is, 20		Solve the system of Non-linear equations by Newton Raphson Method.									
x012345y2.17.713.627.240.961.1SECTION C (40 M)Q10Consider a series reaction $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ carried out in a batch reactor. The differential equation for component A is, $\frac{dC_A}{dt} = -k_1C_A$ for component B is,20											
y2.17.713.627.240.961.1SECTION C (40 M)Q10Consider a series reaction $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ carried out in a batch reactor. The differential equation for component A is, $\frac{dC_A}{dt} = -k_1C_A$ 20for component B is,	Q9	Fit a second order polynomial using least square method to the following data									
y2.17.713.627.240.961.1SECTION C (40 M)Q10Consider a series reaction $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ carried out in a batch reactor. The differential equation for component A is, $\frac{dC_A}{dt} = -k_1C_A$ 20for component B is,20		X	0	1	2	3	4	5]	10	CO3
Q10 Consider a series reaction $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ carried out in a batch reactor. The differential equation for component A is, $\frac{dC_A}{dt} = -k_1C_A$ for component B is, 20		У	2.1	7.7	13.6	27.2	40.9	61.1	-	10	
equation for component A is, $\frac{dC_A}{dt} = -k_1C_A$ for component B is, 20						SECTI	ON C (40	M)			
for component B is,	Q10					$\xrightarrow{k_2} C$	carried ou	it in a batcl	h reactor. The differential		
dC_{B} bC bC			ai		,					20	CO4
	$\frac{dC_B}{dt} = k_1 C_A - k_2 C_B$ and for component C,										

	$\frac{dC_c}{dt} = k_2 C_B$ The initial condition is: at t =0, $C_A = 1, C_B = 0$, and $C_c = 0$. The rate constants are $k_1 = k_2 = 1$ sec ⁻¹ . Use the fourth order Runge - Kutta method to determine the concentration of A, B and C up to 4 sec, using step size of 2 sec.		
Q11	A fin of diameter 0.02 m and length 0.05 m is attached to a wall. The temperature of the wall is 320 °C. The thermal conductivity of the fin material and the heat transfer coefficient from the fin to the surrounding are 50 W/m-K and 100 W/m ² -K. The temperature of the surrounding is 20 °C. The governing equation is $-\frac{d^2\theta}{dx^2} + \frac{hP}{kA}\theta = 0$, where $\theta = T - T_{surr}$, P is the perimeter and A is the area of cross section of the fin. The boundary condition at x = 0.05 m is $\frac{d\theta}{dx} + \frac{h}{k}\theta = 0$. Formulate the problem into the system of linear equation to find the temperature of the fin at x = 0.0124, 0.025, 0.0375 and 0.05. You are not required to obtain the solution.	20	CO4