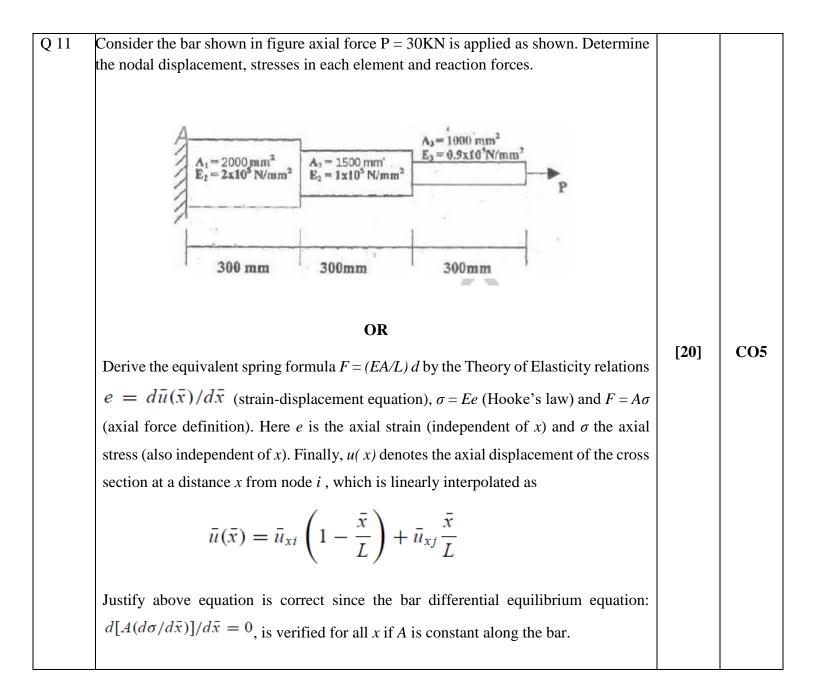


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, January 2022

Course: Finite Element Methods for Fluid Dynamics Program: M. Tech CFD


Course Code: ASEG 7022

Semester: I Time: 03 hrs. Max. Marks: 100

Pages: 04 Instructions: Make use of sketch/plots to elaborate your answer. All sections are compulsory SECTION A (Scan and upload) (5Qx 4M = 20 Marks)S. No. Marks CO Q 1 Consider the spring-mounted bar as shown in the figure. Solve for the displacements of points P and Q using the bar elements (assume AE = constant). k P Q 100 N[04] **CO2** Q 2 Define the following terms: [04] **CO1** (i) Shell element; (ii) Beam element; (iii) Truss element; (iv) 3D element Q 3 Identify the natural and essential boundary conditions of the following differential equation: $\frac{d^2}{dx^2} \left| a(x)\frac{d^2y}{dx^2} \right| + b(x) = 0$ for 0 < x < L; subject to the following boundary conditions: [04] **CO1** y = 0 and dy/dx = 0 at x = 0; $\left[a(x)\frac{d^2y}{dx^2}\right] = A$, $\left|\frac{d}{dx}\left(a(x)\frac{d^2y}{dx^2}\right)\right| = 0$ Consider the following heat conduction problem $(0 \le x \le 1)$: Q4 $\frac{d}{dx}\left(k\frac{dT}{dx}\right) + S = 0$ The boundary conditions specified are as follows: $T(1) = \sqrt{2}, \left(\frac{dT}{dr}\right) = 0$ [04] **CO2** Is $T = Cos(\pi x) + Sec(\frac{\pi x}{4})$ a valid trial function? Explain. (i) (ii) Is $T = Sin(\pi x) + Cosec(\pi x)$ a valid weighting function? Explain.

Q 5	Explain why arbitrarily oriented mechanical loads on an idealized pin-jointed truss structure must be applied at the joints. [Hint: idealized truss members have no bending resistance.] How about actual trusses: can they take loads applied between joints? SECTION B	[04]	CO3
		10M = 40) Marks)
Q 6	Consider a simply supported beam under uniformly distributed load as shown in figure. The governing differential equation and the boundary conditions are given by $EI\frac{d^4v}{dx^4} - q_0 = 0 \qquad v(0) = 0, \frac{d^2v}{dx^2}(0) = 0, v(L) = 0, \frac{d^2v}{dx^2}(L) = 0$	[10]	CO2
Q 7	Consider a bar element whose area of cross-section varies linearly along the longitudinal axis. Derive its stiffness matrix. How will this compare with the stiffness matrix obtained assuming that the bar is of uniform cross section area equal to that of its $\frac{4}{1}$ $\frac{1}{1}$ $\frac{2}{4}$ $\frac{4}{2}$ $\frac{1}{4}$ $\frac{1}{4$	[10]	CO3
Q 8	A 3 node rod element has a quadratic shape function matrix: $N = \langle 1 - \frac{3x}{L} + \frac{2x^2}{L^2}, \frac{4x}{L} - \frac{4x^2}{L^2}, -\frac{x}{L} + \frac{2x^2}{L^2} \rangle$ For $L = 1 m$, $E = 200 \times 10^9$ Pa, $u_1 = 0$, $u_2 = 5 \times 10^{-6}m$, $u_2 = 15 \times 10^{-6}m$ Find: a. The displacement u at $x = 0.25 m$. b. The strain as a function of x . c. The strain at $x = 0.25 m$. d. The stress at $x = 0.25 m$. E, A ₁ \downarrow	[10]	CO3

	Considering the following force disclosure stationship		
Q 9	Considering the following force displacement relationship, $\mathbf{f} = \mathbf{K}\mathbf{u} = \begin{bmatrix} 20 & 10 & -10 & 0 & -10 & -10 \\ 10 & 10 & 0 & 0 & -10 & -10 \\ -10 & 0 & 10 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 & -5 \\ -10 & -10 & 0 & -5 & 10 & 15 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -0.2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ 0 \\ 1 \\ 2 \\ 1 \end{bmatrix}$ Draw a free body diagram of the nodal forces acting on the free-free truss structure and verify that this force system satisfies translational and rotational (moment) equilibrium. OR Solve the differential equation for a physical problem expressed as $\frac{d^2y}{dx^2} + 100 = 0$ $0 \le x \le 10$ with boundary conditions as $y(0)=0$ and $y(10)=0$ using (i) Point collocation method (ii) Sub domain collocation method	[10]	CO4
	SECTION-C	2014 40	
Q 10	(Scan and upload)(2Qx)Two truss members are connected in series as shown in fig and fixed at the ends.	20M= 40	iviarks)
× 10	Properties $E = 1000$, $A = 12$ and $\alpha = 0.0005$ are common to both members. The member		
	lengths are 4 and 6. A mechanical load $P = 90$ acts on the roller node. The temperature		
	of member (1) increases by $\triangle T(1) = 25^{\circ}$ while that of member (2) drops by $\triangle T(2) =$		
	-10° . Find the stress in both members.		
	$E = 1000, A = 12, \alpha = 0.0005 \text{ for both} \\ \text{members; } \Delta T^{(1)} = 25, \Delta T^{(2)} = -10^{\circ}$ $\overline{y} // y \qquad 1 \qquad 2 \qquad P = 90 \qquad 3$ $\overline{y} // y \qquad 1 \qquad (1) \qquad (2) $	[20]	CO5

