Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, January 2021**

Course: Advanced Fluid Mechanics and Heat Transfer-ASEG7019 Programme: M.Tech CFD

Semester: I

Time: 03 hrs.

SECTION A						
S. No.	This section is having Five Question and all are Compulsory to answer	Marks	CO			
Q 1	Describe the physical mechanism of convection. How is the convection heat-transfer coefficient related to this mechanism.	4	CO1			
Q 2	Describe body forces and surface forces, and explain how the net forces acting on a control volume is determined?	4	CO2			
Q 3	Once finite-difference equations are obtained for a conduction problem, what methods are available to effect a solution? What are the advantages and disadvantages of selected method, and when would the technique be applied	4	CO1			
Q 4	Explain the importance of fins and types of fins and its effectiveness based on geometry and shape.	4	CO3			
Q 5	What is the Eulerian description of fluid motion? How does it differ from the Lagrangian description?	4	CO1			
	SECTION B					
Q 6	A composite fin is made from two materials. The inner material of 10 mm diameter has a thermal conductivity of 16 W/m °C while the outer material of 25 mm outside diameter has a thermal conductivity of 52 W/m °C. The convection coefficient is 15 W/m °C and the fin length is 160 mm. Determine the fin efficiency assuming adiabatic fin tip. $m = \sqrt{\frac{hP}{k_1A_1 + k_2A_2}} \qquad \eta_f = \frac{\tanh mL}{mL}$	10	CO2			

Max. Marks: 100

	Schematic		
	$\dot{Q}_{x} \longrightarrow \overbrace{ \leftarrow dx \rightarrow }^{h(Pdx) \ \theta(x)} \qquad \qquad$		
Q 7	Water flows steadily through the 90° reducing elbow shown in the diagram. At the		
	inlet to the elbow, the absolute pressure is 220 kPa and the cross-sectional area is		
	0.01 m^2 . At the outlet, the cross-sectional area is 0.0025 m^2 and the velocity is 16		
	m/s. The elbow discharges to the atmosphere. Determine the force required to hold the elbow in place.		
		10	CO3
Q 8	Derive the Navier-Stokes Equations and Explain the terms in the Final set of the expression.	10	CO1
Q 9	A cylinder of 0.12 m radius rotates concentrically inside a fixed hollow cylinder of 0.13 m radius. Both the cylinders are 0.3 m long. Determine the viscosity of the liquid which fills the space between the cylinders if a torque of 0.88 Nm is required to maintain an angular velocity of 2π rad/s	10	CO3
	SECTION-C		
Q 10	The fluid in direct contact with a stationary solid boundary has zero velocity, there is no slip at the boundary. Thus the flow over a flat plate adheres to the plate surface and forms a boundary layer, as depicted below. The flow ahead of the plate is uniform with velocity V=Ui, U=30 m/s The velocity distribution within the boundary layer	20	CO5
	$(0 \le y \le \delta)$ along cd is approximated as $\frac{u}{u} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$		

	The boundary layer thickness at location d is $\delta=5$ mm. The fluid is air with density $\rho=1.24$ kg/m ³ . Assuming the plate width perpendicular to the paper to be w=0.6 m. Calculate the mass flow rate across surface bc of control volume abcd		
Q11	(a). The inside and outside surface temperatures of a glass window are 20 and 20°C respectively. If the glass is 60 cm× 30 cm with 18 mm thickness, Determine the heat loss through the glass cover in 3 hrs. Take the thermal conductivity of the window glass as 0.78 W/m K (b). A 0.8 m high, 1.5 m wide double pane window consists of two 4 mm thick layers of glass (k=78 W/mK) and it is separated by a 10 mm wide stagnant air space (k=0.026 W/mK). The room is at 20 °C and the outer air is at -10 °C. The heat transfer coefficients are h_i = 10 and h_0 = 40 W/m ² K. Find the rate of heat transfer through the window, and also find the inside surface temperature	20	CO4