Name: Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021

Course: Embedded Systems and IoT Program: M. Tech A&RE Course Code: ECEG7003 Instructions: Read all the questions carefully. Assume any missing data.

SECTION A S.No. **Answer All the questions** Marks CO 1 Define pipeline in embedded systems. Comment on the memory architecture that supports 4 **CO3** pipelining In AVR (ATMega8), what is the size and types of flash memories available? What is the 2 4 **CO1** advantage of using flash memories? In LCD, what is the use of CGRAM and DDRAM memories? Explain the method of 3 4 **CO4** accessing each Define and explain the different states of a task in a RTOS 4 4 **CO1** 5 With an example, explain why a Personal Computer cannot be used for all embedded 4 **CO4** applications **SECTION B** S.No Answer all the questions Marks CO 7 For ARM7, write a C code and algorithm to interface LCD and display your roll number in row 1 and SAP ID in row 2. Move the data in row 1 to left by 5 positions and data in **CO1** 10 row 2 to right by 5 positions Consider both common anode and common cathode types of 7-segment displays and write 8 the hex codes for digits 0 to 9. Interface the seven segment with ATMega8 to display 0 to 10 **CO2** 9 with a delay of 1 second between each display. Write the complete code and algorithm. In ATMega8 what are the different system clock options available to provide the clock 9 source? Draw the complete block diagram and explain how flash memory can be clocked 10 **CO3** from internal and external clock source 10 What is RSSI? Explain the importance of RSSI in wireless communication. Using ESP8266 write a C code to measure RSSI. OR 10 **CO4** Elucidate the advantages and disadvantages of using hardware/software co-design process while designing an application in embedded system. Draw and explain a typical co-design process. **SECTION-C** S. No Answer all the questions Marks CO Design a LED interfacing system with ATMega8 to interface 2 LEDs with Pin 2 and 3. 20 **CO3** 11 Generate the delay using millis function. Analyze the function (code) present in millis

Semester: I Time 03 hrs. Max. Marks: 100

UPES

	function and comment on its working. Can a millis function be written without the help		
	of Real-time clock? If yes, then mention how.		
12	Design an IoT enabled control system using MQTT to switch ON/OFF the inbuilt LED of ESP8266 by sending 0 and 1 respectively from MQTT. Write the complete C code and also draw the block diagram of the required system		
	OR		
	Design a embedded system using RTOS to		
	i) Scan switches and switch ON and OFF motors according to the position of switch		
	ii) Check pressure from pressure gauge every 100millisecond. If the pressure goes beyond above threshold (assume any value) open value to release excess amount of pressure and if pressure goes below threshold then pump extra pressure from the motor	20	CO4
	iii) Check for any incoming messages on serial port and store the message in an array (assume suitable size)		
	iv) If all the three tasks are to be performed simultaneously then what will be the priority assignment among the tasks.		
	Write the C code for each task and draw a block diagram for the complete system		