

SECTION B (4 x 10 = 40 Marks)

Q 6 las | A beam having a cross section in the form of an unsymmetrical wide-flange shape as |
| :--- |
| shown in figure below is subjected to a negative bending moment acting about the |
| z-axis. Determine the width of the top flange in order that the stresses at the top and |
| bottom of the beam will be in the ratio 4:3. |
| A right circular cylindrical tank containing water spins about its vertical geometric axis |
| OO at such speed that the free water surface is a parabaloid ACB as shown in figure |
| below. Using theorem of Pappus and Guldinus, determine the depth of water in the |
| tank when it comes to rest. |

Q 8	Three cables AD, BD and CD support a bucket as shown in figure below. If each cable can sustain a tension of 600 N , determine the greatest weight of the bucket that can be suspended without failure of the system.	10	CO1
Q 9	The state of stress for a steel component is shown in figure below. Determine the magnitudes of principal stresses, maximum shear stress and position of principal planes. Also, determine the normal and shear stresses on an oblique plane 40° clockwise to the plane of 20 MPa stress. If Poisson's ratio for the shaft material is 0.3 and failure of the shaft is according to Maximum Strain Energy per unit volume theory, determine the yield strength of the material for a factor of safety 3.0.	10	CO4

SECTION C (2 x $20=40$ Marks)

Q 10	Draw the shear force and bending moment diagram of the beam hinged at A and roller supported at B as shown in figure below. Also, find the maximum value of the bending moment. Locate the points of contra-flexure if any. Also, determine the slope and deflection at mid-point C. Take $\mathrm{EI}=8.2 \times 10^{6} \mathrm{Nm}^{2}$. OR A double overhanging beam $A B C D E$ has equal overhung $A B$ and $D E$, each of 2 m on both sides. It is simply supported at B and D such that span $B D$ is 6 m and the total length of beam is 10 m . It carries two equal point loads each of 75 kN at the ends A and E together with third point load of 100 kN at the mid-point C . In addition, it also carries a uniformly distributed load of $50 \mathrm{kN} / \mathrm{m}$ between the supports. Sketch the Shear Force and Bending Moment diagrams for this beam. Determine the location of point of contra-flexure, if any and the value of deflection at the mid-point of the beam either by Macaulay's method or by Area Moment method. Given E $=200 \mathrm{GPa}$ and $\mathrm{I}=72 \times 10^{-6} \mathrm{~m}^{4}$.	20	CO 3
Q 11	The centroid of the L section shown in figure below is located at $\bar{x}=25 \mathrm{~mm}$ and $\bar{y}=$ 35 mm with respect to origin O . Determine the moment of inertia about centroidal axes, orientation of principal axes with respect to centroidal axes and principal moments of inertia of the section.	20	CO 2

