Name: Enrolment No:	UPES SAP ID:		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December, 2021 Course: Kinematics and Dynamics of Robotics Semester: I Program: M.Tech - Automation and Robotics Engineering Time: $\mathbf{3}$ hours Course Code: ECEG7013 Max. Marks: 100 No. of Pages: 03 Note: The marks for each question is mentioned on the right hand side. Each question is mandatory. Section B - Q2. and Section C - Q1. have internal choices.			
Section A			
Q1	Briefly discuss about the Joint-Space description versus the Cartesian-Space description.	4	CO4
Q2.	Briefly discuss differential motions of a frame versus a robot.	4	CO3
Q3.	Explain the term degeneracy as applicable to a robot.	4	CO1
Q4.	Classify robots as per Japanese Industrial Robot Association (JIRA).	4	CO1
Q5.	With neat sketch, illustrate any two robot configurations as per robot coordinates.	4	CO1
Section B			
Q1.	A camera is attached to the hand frame T of a Robot as given. The corresponding inverse Jacobian of the robot relative to the frame at this location is also given. The robot makes a differential motion, as a result of which, the change $d T$ in the frame is recorded as given: $T=\left[\begin{array}{cccc} 0 & 1 & 0 & 3 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & -1 & 8 \\ 0 & 0 & 0 & 1 \end{array}\right] \quad{ }^{T} \boldsymbol{J}^{-1}=\left[\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & -1 & 0 & 0 & 0 \\ 0 & -0.1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{array}\right] \quad d T=\left[\begin{array}{cccc} -0.02 & 0 & -0.1 & 0.7 \\ 0 & 0.02 & 0 & 0.08 \\ 0 & -0.1 & 0 & -0.3 \\ 0 & 0 & 0 & 0 \end{array}\right]$ (a) Determine the new location of the camera after the differential motion. (b) Determine the differential operator. (c) Determine the joint differential motion values D_{θ} associated with this move.	10	CO3
Q2.	It is desired to have the first joint of a six axis robot go from an initial angle of 50° to a final angle of 80° in 3 seconds. Determine the coefficients for a third-order polynomial joint-space trajectory. Determine the joint angles, velocities, and accelerations at 1, 2 and 3 seconds. It is assumed that the robot starts from rest and stops at its destination. $\underline{\text { OR }}$ Joint 1 of a 6-axis robot is to go from an initial angle of $\theta_{i}=30^{\circ}$ to the final angle of $\theta_{f}=120^{\circ}$ in 4 seconds with a cruising velocity of $\omega_{l}=30^{\circ} / \mathrm{sec}$. Determine the necessary blending time for a trajectory with linear segments and parabolic blends and plt the joint positions, velocities and accelerations.	10	CO4
Q3.	An object is subjected to the following forces and moments relative to the reference frame. Attached to the object is a frame, which describes the orientation and the location of the object. Determine the equivalent forces and torques acting on the object relative to the current frame.	10	CO3

	$B=\left[\begin{array}{cccc}0.707 & 0.707 & 0 & 2 \\ 0 & 0 & 1 & 5 \\ 0.707 & -0.707 & 0 & 3 \\ 0 & 0 & 0 & 1\end{array}\right] \quad F^{T}=[10,0,5,12,20,0] \mathrm{N}, \mathrm{N} . \mathrm{m}$		
Q4.	The homogeneous transformation matrices between frames $\{1\}-\{2\}$ and $\{2\}-\{3\}$ are: ${ }^{1} \mathrm{~T}_{2}=\left[\begin{array}{cccc} 0.527 & -0.574 & 0.628 & 2 \\ 0.369 & 0.819 & 0.439 & 5 \\ -0.766 & 0 & 0.643 & 3 \\ 0 & 0 & 0 & 1 \end{array}\right] \text { and }^{2} \mathrm{~T}_{3}=\left[\begin{array}{cccc} 0.92 & 0 & 0.39 & 5 \\ 0 & 1 & 0 & 6 \\ -0.39 & 0 & 0.92 & 2 \\ 0 & 0 & 0 & 1 \end{array}\right]$ Determine ${ }^{3} \mathrm{~T}_{1}$	10	CO2
	Section C		
Q1.	For the 3-DOF manipulator arm as shown in Fig.1, assign frames and obtain the joint-link parameters (DH parameters). Also, determine the position of the tool tip with respect to the base frame $\{0\}$. Take the values of $\theta_{1}=30^{\circ}, \theta_{3}=45^{\circ}$, and $d_{2}=0.8 \mathrm{~m}$. Fig. 1: A 3-DOF manipulator OR In a 3-DOF robot, the DH parameters are as given below: The transformation matrix is given as: $T=\left[\begin{array}{cccc} 0.354 & 0.866 & 0.354 & 0.106 \\ -0.612 & 0.500 & -0.612 & -0.184 \\ 0.707 & 0 & 0.707 & 0.212 \\ 0 & 0 & 0 & 1 \end{array}\right]$ Determine the joint variables if $-100^{\circ}<\theta_{1}<100^{\circ},-30^{\circ}<\theta_{2}<70^{\circ}$ and $0.05 \mathrm{~m}<d_{3}<0.5 \mathrm{~m}$	20	CO 2

