

Section C

1. Each Question carries 20 Marks.

2. Instruction: Write long answer.

Q10	Using Forward Euler's method of integrating ODEs, solve following initial value problem: $\frac{d y}{d t}=\frac{y}{t}-\left(\frac{y}{t}\right)^{2} \quad 1 \leq t \leq 2, \quad y(t=1)=1$ You may take $h=0.1$ and 0.02 . Prepare following table for both values of h : In the above table, t_{i} and y_{i} represent time and solution after $i^{\text {th }}$ step. In this, you do not need to write the code. You have to calculate the solution using Euler's method and populate the table. Get the solution for at least 7 time steps.	CO4
Q1	a) The cost of sending a package by an express delivery service is 50 Rs for the first 2 kg , and 20 Rs for each kg or fraction thereof over 2 kg . If the package weighs more than 70 kg , a 100 Rs excess weight surcharge is added to the cost. No package over 100 kg will be accepted. Write a program in FORTRAN 90 that accepts the weight of a package in grams and computes the cost of mailing the package. Be sure to handle the case of overweight packages. The program should be modular. b) Write a program in FORTRAN 90 that computes the tax and tip on a restaurant bill for a patron with a $\$ 44.50$ meal charge. The tax should be 6.75 percent of the meal cost. The tip should be 15 percent of the total after adding the tax. Display the meal cost, tax amount, tip amount, and total bill on the screen. Use functions to calculate the tax and tip. OR a) Write a program in FORTRAN 90 to evaluate the function $f(x)=\ln \frac{1}{1-x}$ For any user-specified value of x, where \ln is natural logarithm (logarithm to the base e). Write the program using a while loop so that the program repeats the calculation for each legal value of x entered into the program. When an illegal value of x is entered, terminate the program. b) Radioactive elements decay at a rate characterized by their "half-life," defined as the time required for the original amount of radioactive material to decrease by half. For example, radon has a half-life of 3.8 days. If there are originally 100 mg of radon gas in an enclosed container, there will be 50 mg after 3.8 days, 25 mg after 7.6 days, and so forth. The process of radioactive decay can be described by the formula $A(t)=A_{0} \exp \left(-t / \tau_{0}\right)$ where A_{0} is the initial amount, $A(t)$ is the amount after time t, t_{0} is proportional to half-life $t_{\text {half }}$ $t_{0}=-\frac{t_{\text {half }}}{\ln (1 / 2)}$ For Radon, $t_{0}=5.48$ days. Write a program in FORTRAN 77 that calculates and prints the amount of radon remaining from a given original sample mass after a specified number of days (print this for several intervals). This program should have provision to output the data in an external file, which should contain two columns: time and amount of radon remaining.	$\begin{gathered} (10+10) \\ \mathrm{CO} 2 \end{gathered}$

