

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **School of Health Sciences**

## **End Semester Examination, December 2021**

Programme Name: B.Tech. Food Tech : 3<sup>rd</sup> Semester : Nutrition Biochemistry **Course Name** Time : 3 hour : HSFT 2003 Max. Marks: 100

**Course Code** 

Nos. of page(s) : 4

Instructions : All questions are compulsary

|    | SECTION A (Type answers in text box)                                                         |       |     |
|----|----------------------------------------------------------------------------------------------|-------|-----|
|    |                                                                                              | Marks | CO  |
| Q1 | Select one of the following that is not correct                                              |       |     |
|    | A. Enzyme lower activation energy of a reaction                                              |       |     |
|    | B. The presence of an enzyme has no effect on $\Delta G^{\circ}$                             |       |     |
|    | C. Covalent catalysis is employed by some enzymes to provide an alternative reaction pathway | 1.5   | CO4 |
|    | D. Enzyme often lower the activation energy by destabilizing transition state intermediates  |       |     |
| Q2 | Conversion of L-threonine to L-isoleucine by threonine dehydratase operates by:              |       |     |
|    | a. Feedback regulation                                                                       |       |     |
|    | b. Feedback inhibition                                                                       | 1.5   | CO4 |
|    | c. Allosteric regulation                                                                     |       |     |
|    | d. Covalent regulation                                                                       |       |     |
| Q3 | When the velocity of enzyme activity is plotted against substrate concentration, which       |       |     |
|    | of the following is obtained?                                                                |       |     |
|    | a) Hyperbolic curve                                                                          | 1.5   | CO4 |
|    | b) Parabola                                                                                  | 1.3   | CO4 |
|    | c) Straight line with positive slope                                                         |       |     |
|    | d) Straight line with negative slope                                                         |       |     |
| Q4 | Which of the following is not a reducing sugar?                                              |       |     |
|    | A. Erythrose                                                                                 |       |     |
|    | B. Sucrose                                                                                   | 1.5   | CO2 |
|    | C. Galactose                                                                                 |       |     |
|    | D. Ribose                                                                                    |       |     |
| Q5 | Which of the following will provide the main fuel for muscle contraction during short        |       |     |
|    | term maximum exertion?                                                                       | 1.5   | CO2 |
|    | A. Plasma glucose                                                                            |       |     |

|     | P. Musala alvangan                                                                         |     |     |
|-----|--------------------------------------------------------------------------------------------|-----|-----|
|     | B. Muscle glycogen                                                                         |     |     |
|     | C. Plasma nonesterified fatty acid                                                         |     |     |
| 06  | D. Muscle reserves of triacylglycerol                                                      |     |     |
| Q6  | What is the general term used for the anaerobic degradation of glucose to obtain energy?   |     |     |
|     | a) Anabolism                                                                               | 1.5 | CO1 |
|     | b) Oxidation                                                                               | 1.5 | CO2 |
|     | c) Fermentation                                                                            |     |     |
| 07  | d) Metabolism                                                                              |     |     |
| Q7  | A blood sample is taken from a 25-year-old man after he has eaten 3 slices of toast and    |     |     |
|     | a boiled egg. Which one of the following will be at higher concentration than if the blood |     |     |
|     | sample had been taken after an overnight fast?                                             | 1 5 | CO1 |
|     | a. Non-esterified fatty acid.                                                              | 1.5 | CO1 |
|     | b. Glucagon.                                                                               |     |     |
|     | c. Glucose.                                                                                |     |     |
| 0.0 | d. Ketone bodies.                                                                          |     |     |
| Q8  | Bomb calorimeter is used to determine calorific value of food at constant:                 |     |     |
|     | a. Temperature                                                                             |     | GO4 |
|     | b. Pressure                                                                                | 1.5 | CO1 |
|     | c. Volume                                                                                  |     |     |
| - 0 | d. None of the above                                                                       |     |     |
| Q9  | Rickets is a disorder caused due to dietary deficiency of                                  |     |     |
|     | a. Sodium                                                                                  |     |     |
|     | b. Potassium                                                                               | 1.5 | CO4 |
|     | c. Calcium                                                                                 |     |     |
|     | b. Magnesium                                                                               |     |     |
| Q10 | Amino acid that is know as alpha-helical inducer in proteins:                              |     |     |
|     | a. Glycine                                                                                 |     | ~   |
|     | b. Alanine                                                                                 | 1.5 | CO3 |
|     | c. Leucine                                                                                 |     |     |
|     | d. Proline                                                                                 |     |     |
| Q11 | Number of essential amino acids for human are                                              |     |     |
|     | a. 7                                                                                       |     |     |
|     | b. 8                                                                                       | 1.5 | CO3 |
|     | c. 9                                                                                       |     |     |
|     | d. 10                                                                                      |     |     |
| Q12 | The secondary structure of proteins describe:                                              |     |     |
|     | a. How groups of amino acids fold locally                                                  |     |     |
|     | b. How two proteins bind/fold with each other                                              | 1.5 | CO3 |
|     | c. The amino acid sequence                                                                 |     |     |
|     | d. How secondary structural units fold together                                            |     |     |
| Q13 | Phosphorylase is a:                                                                        |     |     |
|     | a. Ligase                                                                                  |     |     |
|     | b. Transferase                                                                             | 1.5 | CO4 |
|     | c. Lyases                                                                                  |     |     |
|     | d. Hydrolases                                                                              |     |     |
| Q14 | For non-competitive inhibitors:                                                            | 1.5 | CO4 |

| 1   | a. V <sub>max</sub> decreases                                                                                                                                                                                                                                                              |     |     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
|     | b. V <sub>max</sub> remains unchanged                                                                                                                                                                                                                                                      |     |     |
|     | c. K <sub>m</sub> decreases                                                                                                                                                                                                                                                                |     |     |
|     | d. Km increases                                                                                                                                                                                                                                                                            |     |     |
| Q15 | Butylated hydroxyanisole is used in foods as                                                                                                                                                                                                                                               | 1.5 | CO5 |
| Q16 | Sequential reduction of molecular oxygen (equivalent to sequential addition of electrons) leads to formation of reactive oxygen species like                                                                                                                                               | 1.5 | CO5 |
| Q17 | The defective enzyme associated with the glycogen storage disease, "Pompe" is                                                                                                                                                                                                              | 1.5 | CO4 |
| Q18 | Diffusion of non-polar molecules across membranes in the direction of higher to lower concentrations is known as                                                                                                                                                                           | 1.5 | CO3 |
| Q19 | Waxes are that are made by combining fatty acids with long chain alcohols.                                                                                                                                                                                                                 | 1.5 | CO3 |
| Q20 | The base catalyzed hydrolysis of esters is also called                                                                                                                                                                                                                                     | 1.5 | CO3 |
|     | SECTION B (Scan and upload)                                                                                                                                                                                                                                                                |     |     |
| Q21 | Describe the biochemical functions of calcium in human body. (5 marks)                                                                                                                                                                                                                     | 5   | CO4 |
| Q22 | What are steroids? State its classifications. (2 marks)                                                                                                                                                                                                                                    |     |     |
|     | 22222222                                                                                                                                                                                                                                                                                   | 5   |     |
|     | Stearic acid Linolenic acid                                                                                                                                                                                                                                                                |     | CO3 |
| Q23 | What are the factors that impact concentrations of hormones in target cells? (2 marks) Compare general features of hormones that bind to intracellular recetors and cell                                                                                                                   | 5   | CO3 |
| Q23 | What are the factors that impact concentrations of hormones in target cells? (2 marks)                                                                                                                                                                                                     |     |     |
|     | What are the factors that impact concentrations of hormones in target cells? (2 marks) Compare general features of hormones that bind to intracellular recetors and cell surface receptors. (3 marks)                                                                                      | 5   | CO5 |
|     | What are the factors that impact concentrations of hormones in target cells? (2 marks) Compare general features of hormones that bind to intracellular recetors and cell surface receptors. (3 marks) Describe the various mechanisms of protection against free radical damage? (5 marks) | 5   | CO5 |

| Q26 | Given are: Synthesis of glucose 6-phosphate 1. Glucose + $P_i \rightarrow \text{glucose-6-phosphate} + H_2O;  \Delta G^\circ = 13.8 \text{ kJ/mol}$ 2. $\Delta G^\circ = 13.8 \text{ kJ/mol}$ 3. $\Delta G^\circ = 30.5 \text{ kJ/mol}$ 4. Describe the major pathways for energy metabolism. (5 marks) 1. Hydrolysis of p-nitrophenylacetate to p-nitrophenol is catalysed by \$\alpha\$-chymotrypsin enzyme. The proposed mechanism is: $E + S \stackrel{Fast}{\rightleftharpoons} ES \stackrel{K_1}{\to} ES' + P_1 \stackrel{K_2}{\to} E + P_2$ Where, ES, $P_1$ and $P_2$ are acetal enzymes, nitrophenol and acetate ion, respectively. If $K_1$ is much smaller than $K_2$ , draw a qualitative plot of potential energy vs reaction coordinate for above reaction. (5 marks) 1. Using the following diagram, identify the modes of enzyme inhibition. E, Enzyme; S, Substrate; I, Inhibitor. (4 marks) 1. Substrate; I, Inhibitor. (5 marks) 1. Substrate; I, Inhibitor. (6 marks) 1. Substrate; I, Inhibitor. (7 marks) 1. Substrate; I, Inhibitor. (8 marks) 1. Substrate; I, Inhibitor. (9 marks) 1. Substrate Inhibitor. (9 ma | 15 | CO4 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|     | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | ı   |
| Q27 | What is electron transport chain? (3 marks)  Describe the role of citric acid cycle in transamination and gluconeogenesis. (4 marks)  Define caramelization. (3 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 | CO2 |
| Q28 | Describe the principle forces associated with protein folding. (4 marks) Briefly describe the secondary, tertiary and quarternary structure of proteins. (6 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 | CO3 |