Name:

Enrolment No:

Semester: III

Time: 3 hour

Max. Marks: 100

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES School of Health Sciences

Mid Semester Examination, September-October 2021

Programme Name: M.Sc. Clinical Research

Course Name: Applied pharmacokinetics and drug dosing

Course Code: HSCR8004P

No. of pages: 5

Instructions: All questions are compulsory

SECTION A

(Type the answers in test box)

(Type the answers in test box)			
	MCQs, One or two line answers.	Marks	
Q 1	Which of the following is NOT a pharmacokinetic process? a. Bioavailability b. Excretion c. Metabolism d. Receptor binding	1.5	CO1
Q2	Which of the following formulas defines bioavailability? a. Amount of drug absorbed ÷ drug dose b. Amount of drug in body ÷ plasma drug concentration c. Rate of drug elimination ÷ plasma drug concentration d. Plasma concentration of unbound drug ÷ total plasma drug concentration	1.5	CO1
Q3	In a plasma concentration time curve for a drug following first order kinetics, the absorption rate constant is calculated based on- a. Half life b. Volume of distribution c. Clearance d. Constant steady state concentration	1.5	CO1
Q4	Duration of action depends upon a. Clearance b. Rate of elimination c. Bioavailability	1.5	CO1

	d. All of the above		
Q5	The volume of distribution (Vd) for a drug that is completely retained in the vascular compartment would be? a. High b. Low c. Unchanged d. Cannot be determined	1.5	CO1
Q6	We start IV infusion of a drug and ensures that rate of drug delivery is constant over time. Which of the following factor will determine the time required for drug to reach steady state concentration (Css) in the blood? a. Apparent volume of distribution b. Bioavailability c. Clearance d. Half-life	1.5	CO1
Q7	Acidic drug binds to: a. Globulin b. Alpha-1 glycoprotein c. Albumin d. None	1.5	CO1
Q8	Loading dose depends on- a. Half life b. Plasma volume c. Volume of distribution d. Rate of clearance	1.5	CO1
Q9	Ratio of LD ₅₀ and ED ₅₀ is? a. Therapeutic index b. Bioavailability c. Potency d. Efficacy	1.5	CO1
Q10	Equation for first order half-life is? a. $t_{1/2}=0.5\ C_0/k_0$ b. $t_{1/2}=2\ C_0/k_0$ c. $t_{1/2}=1.5\ C_0/k_0$ d. $t_{1/2}=0.693\ C_0/k_0$	1.5	CO2

Q11	Which of the following terms describe the application of pharmacokinetic principles to individualize pharmacotherapy? a. Drug individualization b. Individual-factor monitoring c. Patient-factor monitoring d. Therapeutic drug monitoring	1.5	CO2
Q12	A 70kg man was given a drug with dose of 100 mg/kg, t _{1/2} is 10 hours, plasma concentration is 1.9 mg/ml. Find the clearance. a. 20 liter/hour b. 40 liter/hour c. 0.2 liter/hour d. 2 liter/hour	1.5	CO2
Q13	Concentration of drug in blood is 40 microgram/ml. Dose of the drug is 200mg. Find the volume of distribution.	1.5	CO2
Q14	What is the amount of drug remaining in the body after 3 half-lives in first order kinetics?		CO2
Q15	A drug having 40% absorption and hepatic extraction ratio of 0.6. What is the bioavailability of that drug?		CO2
Q16	Drug X is given IV at a dose of 300 mg. Blood concentrations were measured and the AUC was calculated to be 9.9 mg*h/L. What is the clearance of this drug?		CO2
Q17	Displacement of Plasma protein bound drug will a. Increase drug plasma level b. Increase side effects c. Decrease effect d. None		CO2
Q18	Volume of distribution of drug is 500ml and target concentration of drug in blood is 5 g/L. 20% of administered drug is reached to systemic circulation. What will be the loading dose of that drug? a. 1 gram b. 5 grams c. 12.5 grams d. 25 grams	1.5	СО3
Q19	A drug X was given continuous intravenous infusion at 1.6 mg/min. The clearance of the drug is 640 ml/min. With a half-life of 1-8 hours, what would be the steady state plasma concentration of drug?	1.5	CO3

	2.00 / 1		1
	a. 2.88 mg/ml		
	b. 0.004 mg/ml		
	c. 0.002 mg/ml		
	d. 3.55 mg/ml		
Q20	We are planning to infuse a drug intravenously at a constant amount per unit time (rate). It has a first-order elimination rate constant (kel) of 0.35 h ⁻¹ . No loading dose will be given. Approximately how long will it take for blood levels to reach steady state after the infusion begins?		
	a. 0.7-1 h	1.5	CO3
	b. 1.2-3 h		
	c. 3.5-5 h		
	d. 8-10 h		
	SECTION B		
	(Scan and upload) Word limit 250		
	Short answer type questions		
Q1	Drug X is administered IV at a dose of 250 mg. A blood concentration was drawn at		
	3 h and urine was collected from 2 to 4 hours. The blood concentration at 3 h was 5		
	mg/L and during the two-hour interval, 50 mg of drug was eliminated. What is the	5	CO1
	renal clearance of this drug?		
Q2	Drug X is given IV at a dose of 100 mg. The renal clearance of the drug is 7 L/h and		
	the hepatic clearance is 23 L/h. Assuming that these are the only two routes of	5	CO1
	elimination, what is the total clearance? How much drug (in mg) was metabolized?		
Q3	Drug X (100 mg), administered as an intramuscular injection, has the following	X (100 mg), administered as an intramuscular injection, has the following	
	pharmacokinetic parameters: $t_{1/2} = 8$ h, $ka = 1.5$ h ⁻¹ , $V = 10$ L, $F = 65\%$. What will be	5	CO2
	the concentration at 12 hours after the dose is administered?		CO2
Q4	What is therapeutic drug monitoring?	5	CO5
	SECTION C	1	1000
	(Scan and upload)		
Long	answer type questions (Calculation)		
Q1	a. Write about most commonly used method for AUC calculation. (5)		
	b. The following data were obtained after a short-term infusion of drug. Calculate the		
	AUC_t and AUC_{∞} using trapezoid method. (10)		
		15	CO2
	Time (h) [Drug] (mg/L) 0 0	13	CO3
	1 10		
	2 15		
	3 18		
	10		

	4	9		
	5	4		
	6	2		
Q2	The following data were obtained after of tablet. Determine the clearance (CI	c system after extravascular administration drug X was administered orally as a 1000 mg L/F), half-life, volume (V/F), maximum concentration (t _{max}) and the absorption rate Drug (mg/L)	15	CO2
	4 6 8	14.42 7.75 3.96		
		SECTION D		
	·	can and upload)		
	V	Vord limit 500		
Q1	Write a note on principles behind pharmacokinetic population modeling.		10	CO1 CO2
Q2	Describe the drug dosing consideration disease.	in patients with acute and chronic kidney	10	CO4