	UNIVERSITY OF PETROLEUM AND ENE	RCV			
	STUDIES End Semester Examination, December 2021				
	Course: Microbial Physiology and Metabolism Semester: III	••			
	Program: B.Sc. Microbiology	Duration: 03 hrs.			
	Course Code: HSMB 2006	Max. Marks: 10			
			Ū		
	Instructions: SECTION A	(20Q x1.5M= 30			
	(Type the answers in test box)	(20Q X1.5M = 50 Marks)	CO		
	MCQs or Fill in the blanks	1.5	СО		
	MCQs of Fill in the blanks	1.5			
Q1	The generation time of a culture that produces three generations per hour	1.5			
	is				
	a. Greater than that produces two generations per hour				
	b. Lesser than that produces two generations per hour				
	c. Equal to that produces two generations per hour				
	d. Greater than that produces two generations per hour		1		
Q2	What will happen, due to osmosis, if you keep a cell in a hypotonic	1.5			
	environment				
	a. Water will go into the cell				
	b. The cell will shrink				
	c. Water will come out of the cell				
	d. The cell will live happily		1		
Q3	The bacteria that use reduced inorganic molecules as the source of electron are	1.5			
	Known as				
	a. Organotrophs				
	b. Lithotrophs				
	c. Chemotrophs		1		
04	d. AutotrophsWhich of the following is a trace element for microbial growth?	1.5	1		
Q4	a. Copper ion	1.5			
	b. Iron ion				
	c. Plumbum ion				
	d. Mercury ion		1		
Q5	During diauxic growth curve, the bacterial growth shows two peaks. Which of	1.5			
	the following phase is present between the two peaks?				
	a. Lag phase				
	b. Log phase				
	c. Saturation phase				
06	d. Decline phase	1.	1		
Q6	The movement of nutrients from a higher concentration outside the cell to a	1.5			
	lower concentration inside the cells, without the utilization of energy and without the need of carrier is called				
	a. Simple diffusion				
	b. Facilitated diffusion				
	c. Group translocation				
	d. Active diffusion		2		

Q7	The main barrier regulating the passage of solutes between the external	1.5	
	environment and the cell is the membrane		2
Q8	The following organisms typically get their carbon for biosynthesis from	1.5	
	organic comp		
	a. Aerobic, glucose-respiring bacteria (aerobic respiration)		
	b. Ammonia-oxidizing bacteria (chemolithotrophic bacteria)		
	c. Photosynthetic cyanobacteria (phototrophic metabolism)		
	d. None of the above		2
Q9	The structural unit of photosynthesis is called	1.5	
-	a. Nucleus		
	b. Endoplasmic reticulum		
	c. Thylakoid		
	d. Grana		2
Q10	Which of the following does not affect the rate of the photosynthesis?	1.5	
	a. Temperature		
	b. Light duration		
	c. Light intensity		
	d. Light quality		2
Q11	In photosynthesis, light reaction occurs in	1.5	
	a. Nucleus		
	b. Stroma		
	c. Endoplasmic reticulum		
	d. Grana		2
Q12	In nitrogen fixation, nitrogen is ultimately converted to	1.5	
	a. Nitrate		
	b. Nitrite		
	c. Urea		
	d. Ammonia		2
Q13	The association of nitrogen fixing Rhizobium with plant is an example of	1.5	
	a. Neutralism		
	b. Commensalism		
	c. Mutualism		
	d. Parasitism		2
-	Which of the following is a highly reactive and potentially a toxic ion for plant	1.5	
	cells?		
	a. Nitric oxide		
	b. Nitrate		
	c. Nitrite		2
015	d. Nitrous oxide		2
	In which of the following processes, glucose is not completely oxidized to	1.5	
	carbon dioxide?		
	a. Fermentation		
	b. Aerobic respiration		
	c. Anaerobic respiration		2
016	d. None of the above	1 -	3
Q16	Which of the following acts as an electron acceptor in fermentation process?	1.5	
	a. Oxygen		
	b. Carbon dioxide		
	c. Pyruvate		2
017	d. Nitrogen	1 5	3
Q17	NAD+ accepts and gets reduced during glycolysis.	1.5	
	a. Electron		
	b. Proton		
	c. Neutron		2
	d. Electron and proton		3

Q18	The electron transport chain of bacteria takes place in	1.5	
	a. Mitochondria		
	b. Nucleus		
	c. Cytoplasm		
	d. Plasma membrane		3
	Glucose is oxidized to as the end product of glycolysis	1.5	3
Q20	In the Chemiosmotic theory, the energy obtained from the electron transport chain is used to transport across the membrane	1.5	3
	SECTION B	(4Qx5M=20	
	(Scan and upload)	Marks)	CO
	Short Answer Type Question (5 marks each) (100-120 words)		
Q1	Define the types of bacteria based on their ability to grow at various temperature, pH and solute and water activity?	2.5+1+1.5	1
Q2	Cyanobacteria are aerobic bacteria that perform nitrogen fixation. However, the nitrogenase enzyme involved in nitrogen fixation requires anaerobic condition. Identify how do Cyanobacteria perform nitrogen fixation? Also mention the 2 components of the nitrogenase enzyme.	4+1	2
Q3	 Here is a constrained of the difference and explain the rationale for the observed difference 	3+2	2

Q4	Better	E' (Volts)	1.5+3.5	
	electron donors CO ₂ /glucose [-0.43]	-0.5 -	210 1 010	
	2H ⁺ /H ₂ [-0.42]			
	CO ₂ /methanol [-0.38]	-0.4		
	NAD ⁺ /NADH [-0.32] CO ₂ /acetate [-0.28]	-0.3 -		
	S ⁰ /H ₂ S [-0.27] Pyruvate/lactate [-0.19]	-0.2		
	FAD/FADH ₂ [-0.18] SO ₃ ²⁻ /H ₂ S [-0.17]	-0.1-		
	3 . 2			
	Fumarate/succinate [0.031]	0.0 —		
	CoQ/CoQH ₂ [0.10]	+0.1-		
	Cyt c (Fe ³⁺)/Cyt c (Fe ²⁺) [0.254]	+0.2		
	Cytc(Fe ⁻)/Cytc(Fe ⁻)[0.254]	+0.3		
	NO3 ^{-/} NO2 ⁻ [0.421]	+ 0.4		
	NŐ ₂ ⁻/NĤ ₄ +[0.44]	+0.5		3
		+ 0.6		
	NO3 ⁻ // ₂ N2[0.74]	+0.7—		
	Fe ³⁺ /Fe ²⁺ [0.771]	+0.8		
	/ ₂ O ₂ / H ₂ O [0.815]	+0.9		
	Better			
	lectron acceptors	+1.0		
		l electron acceptor under arobic		
	ration and an aerobic respirati	2, fumarate, FE^{3+} , SO_3^{2-} or nitrate as a		
		ifferent conditions. This organism uses		
	1	d on the picture, determine the order of		
energ	y yield from highest to lowes	t for these electron acceptors. Also		
ment	ion the rationale for your answ			
	~ _	CTION C	(2Qx15M=30	со
Т		and upload)	Marks)	
		subsections (300 words max)		
		abolism is used by Cyanobacteria?	15	
	ribe the oxygenic phototrophi		11.0.0	2
		e mitochondrial aerobic respiration r each step involved in aerobic respiration.	11+2+2	
	•	ower ATP generation during bacterial		
	aerobic respiration.			
	_	erated in reality than the theoretical		
	calculation of ATP?			3
		CTION- D	(2Qx10M=20	со
		and upload)	Marks)	
	Long Answer type Question (200-250 words)			
-	a. Draw a graph for microbial growth curve in a closed system, label the axis of the graph and write the name of different phases on the graph			1
	Explain each phase of the growt			
	Define generation time			
	t is an active transport?		1+8+1	2
•	ain the two types of active trans	port in detail with example		
1		se two.		