

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES School of Health Sciences

End Semester Examination, December 2021

Programme Name: M.Sc. MicrobiologyCourse Name: BiochemistryCourse Code: HSMB7008Nos. of page(s): 5

Semester : 1st Time : 3 hour Max. Marks : 100

Instructions : All questions are compulsary

	SECTION A (Scan and upload)		
		Marks	СО
Q1	 If ΔG of a reaction is zero: A) The reaction goes virtually to completion and is essentially irreversible B) The reaction proceeds only if free energy can be gained C) The reaction is exergonic D) The system is at equilibrium and no net change occurs 	1.5	C01
Q2	 Which of the following statement about ATP is correct? A) It contains 3 high energy phosphate bonds B) It is needed in the body to drive exergonic reaction C) It functions in the body as a complex with Mg²⁺ D) It is used as energy store in the body 	1.5	CO1
Q3	 ΔG is defined as the standard free energy change when: A) The reactants are present in concentration of 1 mmol/L at pH 7 B) The reactants are present in concentration of 1 mol/L at pH 7 C) The reactants are present in concentration of 1 mol/L at pH 7.4 D) The reactants are present in concentration of 1 mmol/L at pH 7.4 	1.5	CO1
Q4	Which of the following is not a reducing sugar? A) Erythrose B) Sucrose C) Galactose D) Ribose	1.5	CO3
Q5	What is the general term used for the anaerobic degradation of glucose to obtain energy?	1.5	CO3

	 A) Anabolism B) Oxidation C) Fermentation D) Metabolism 		
Q6	 Which of the following will provide the main fuel for muscle contraction during short term maximum exertion? A) Plasma glucose B) Muscle glycogen C) Plasma nonesterified fatty acid D) Muscle reserves of triacylglycerol 	1.5	CO3
Q7	 In competitive inhibition, an inhibitor: A) binds at several different sites on an enzyme. B) binds reversibly at the active site. C) binds covalently to the enzyme. D) lowers the characteristic V_{max} of the enzyme. 	1.5	CO2
Q8	Michaelis and Menten assumed that the overall reaction for an enzyme-catalyzed reaction could be written as k_1 k_2 $E + S$ \leftrightarrow ES \rightarrow P k_{-1} k_{-1} Using this reaction, the rate of breakdown of the enzyme-substrate complex can be described by the expression: $A)$ $A)$ k_1 ($[E_1] - [ES])[S]$ $B)$ k_{-1} [ES] + k_2 [ES] $C)$ k_2 [ES] $D)$ k_{-1} [ES]	1.5	CO2
Q9	 The concept of "induced fit" refers to the fact that: A) when a substrate binds to an enzyme, the enzyme induces a loss of water (desolvation) from the substrate. B) substrate binding may induce a conformational change in the enzyme, which then brings catalytic groups into proper orientation. C) enzyme-substrate binding induces an increase in the reaction entropy, thereby catalyzing the reaction. D) enzyme specificity is induced by enzyme-substrate binding. 	1.5	CO2
Q10	 Which of the following statements about fatty acids is true? A) Fatty acids with longer chain lengths have a higher melting point than fatty acids with shorter chain lengths. B) Saturated fatty acids have a lower melting point than unsaturated fatty acids. C) Cis double bonds of unsaturated fatty acids cause tighter packing of hydrophobic tails. D) Double bonds in polyunsaturated fatty acids are almost always conjugated. 	1.5	CO5

Q11	Which membrane lipid contains an amide bond? A) cholesterol B) phosphatidylserine C) phosphatidic acid D) sphingomyelin	1.5	CO5
Q12	 Which of the following is a characteristic of both triacylglycerols and glycerophospholipids? A) Both contain carboxyl groups and are amphipathic B) Both contain fatty acids and are saponifiable. C) Both contain glycerol and ether bonds. D) Both can be negatively charged at cellular pH. 	1.5	CO5
Q13	 Which of the following are positively charged basic amino acids? A) Lysine and arginine B) Lysine and asparagine C) Glutamine and arginine D) Lysine and glutamine 	1.5	CO4
Q14	 Select the one of the following statements that is NOT CORRECT. A) The side-chains of the amino acids cysteine and methionine absorb light at 280 nm. B) Glycine is often present in regions where a polypeptide forms a sharp bend, reversing the direction of a polypeptide. C) Polypeptides are named as derivatives of the C-terminal aminoacyl residue. D) The C, N, O, and H atoms of a peptide bond are coplanar. 	1.5	CO4
Q15	The 21st amino acid is A) Hydroxy lysine B) Hydroxyproline C) Selenocysteine D) Citrulline	1.5	CO4
Q16	A thermodynamically unfavorable reaction (endergonic) can be driven in the forward direction by coupling it to an	1.5	CO1
Q17	The defective enzyme associated with the glycogen storage disease, "Von Gierke" is	1.5	CO3
Q18	are inactive precursors of enzymes.	1.5	CO2
Q19	The process of migration of charged molecules in response to an electric field is called	1.5	CO4
Q20	The salts of fatty acids are also called	1.5	CO5

	SECTION B (Scan and upload)		
Q1	Describe any two high energy compounds with examples. (5 marks)	5	CO1
Q2	Write the difference in melting points of vegetable oils vs. animal fats. (2 marks) Categorize each of the following compounds as being either a glycerophospholipid or a sphingophospholipid. (3 marks) a) CH ₃ CH ₂	5	CO5
Q3	Define the secondary, tertiary and quaternary structure of proteins. (5 marks)	5	CO4
24	Describe the amphibolic nature of TCA cycle. (5 marks)	5	CO3
	SECTION C (Scan and upload)		·
Q1	 A. Oxaloacetate + Acetyl-CoA + H₂O → citrate + CoA + H⁺ At pH 7 and 25°C in rat heart mitochondria - oxaloacetate = 1µM; acetyl-CoA = 1µM; citrate = 220 µM; CoA = 65 µM; ΔG°= -32.2 kJ/mol ; RT = 2.48 kJ/mol. What is direction of metabolite flow? (5 marks) B. Protein folding happens spontaneously in living cells. Justify the comment in relation with enthalpy, entropy and Gibbs free energy. (4 marks) C. Why is ATP hydrolysis accompanied by high free energy change? (4 marks) D. What is phosphorylation potential? (2 marks) 	15	CO1

Q2	A. How do pH impact enzyme catalysed reaction? (5 marks) B. Plot graphs between rate of reaction vs pH for enzymes that has i) one; ii) Two; iii) Multiple ionizable amino acid residue at the active site of the enzyme. (5 marks) C. Hydrolysis of p-nitrophenylacetate to p-nitrophenol is catalysed by α - chymotrypsin enzyme. The proposed mechanism is: $E + S \stackrel{Fast}{\Rightarrow} ES \stackrel{K_1}{\rightarrow} ES' + P_1 \stackrel{K_2}{\rightarrow} E + P_2$ Where, ES, P ₁ and P ₂ are acetal enzymes, nitrophenol and acetate ion, respectively. If K ₁ is much smaller than K ₂ , draw a qualitative plot of potential energy vs reaction coordinate for above reaction. (5 marks)	15	CO2
	SECTION D (Scan and upload)		_
Q1	 A. Describe the following: i) electron transport chain. (4 marks) ii) glycogenesis; (3 marks) iii) gluconeogenesis (3 marks) 	10	CO3
Q2	 A. Explain with an example, role of protein structure as a causative agent for diseases. (4 marks) B. Briefly describe the following: (6 marks) i) Fibrous protein ii) Globular protein iii) Membrane 	10	CO4