Name:		UPES				
Enrolment No:						
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination (ESE), December 2021 Course: Physics I Semester: I						
Course	Course Code: PHYS 1021 Max. Marks: 100					
Instruct	tions: Attempt all Sections.					
	SECTION A					
S. No.	MCQs or Fill in the blanks	30 Marks	СО			
1	Characteristics of a LASER are a) Directionality b) High intensity c) Mono-Chromocity d) High degree of coherence e) All of above	1.5	CO1			
2	An optical fiber work on the principle of	1.5	CO1			
3	The V-number value (numerical) for a single mode fiber is	1.5	CO1			
4	For a conservative field, which of the following equations holds get a) $\int E. dl = 0$ b) $\int H. dl = 0$ c) $\int B. dl = 0$ d) $\int D. dl = 0$	ood 1.5	CO3			
5	Dielectric strength of a material depends on a) Thickness b) Moisture Content c) Temperature d) All Of The Above 	1.5	CO2			
6	In He-Ne laser, the ratio of He to Ne gas is	1.5	CO1			
7	In term of del operator, 3-dimensional differential form an electros written as	static Gauss's law is 1.5	CO2			

8	Attenuation in an optical fiber is caused by	1.5	
	a) Scattering		
	b) Absorption		CO1
	c) Both scattering and absorption		COI
	d) None of these		
		1.5	
9	The wavelength associated with a moving particle		
	a) depends upon charge associated with it		
	b) does not depends on charge associated with it		CO4
	c) depends upon the medium in which the particle travels		004
	d) none of these		
10		1 -	
10	Wave function associated with a moving material particle isof its charge.	1.5	CO4
11	In Ampere's circuital law, what is the purpose of an 'Amperian Path'?	1.5	
11	In rampere s'encultur law, what is the purpose of an ramperial ram.	1.5	
	a) Computation of magnetic field intensity		
	b) Determination of differential element of path length		CO3
	c) Estimation of electric flux density		000
	d) Detection of loop in a constant plane		
12	For a given medium, the electric flux density (D) is related to the electric field (E)	1.5	
	as		CO2
13	Which of the following is not true in case of nanomaterials	1.5	
	a) Increased ratio of surface area to volume		
	b) Altered surface properties compared to bulk material		CO5
	c) Increase in size compared to bulk material		005
	d) Some of the mechanical properties will be altered compared to bulk material		
14	The relation between Einstein's coefficients A_{21} and B_{21} is expressed as	1.5	CO1
15	When the two members of a Qubit pair exist in a single quantum state, it is known as	1.5	
15		1.5	
	A. Engagement		CO4
	B. Superposition		004
	C. Entanglement		
16	D. None of the above The elemental volume (dv) in cylindrical coordinate (ρ , ϕ , z) is written as	1.5	
10	The elemental volume (dv) in cylindrical coordinate (p , ϕ , z) is written as	1.5	CO2
17	The unit of dipole moment / unit volume is	1.5	000
	1		CO2
18	The product of uncertainty between energy and time	1.5	CO4
19	The minimum energy require for pair production isMeV.	1.5	CO4
			<u> </u>

20	In terms of Planck's constant (h), rest mass of particle (m) and speed of light X-ray wave (c), the Compton's wavelength is given by the (formula only)	1.5	CO4
	SECTION B the word limit 20 marks 4 questions 5 marks each		
Q	Short Answer Type Question (5 marks each) Scan and Upload 4 questions 5 marks each		СО
1	Calculate the de Broglie wavelength an electron (mass 9.1×10^{-31} kg) whose kinetic energy is 120 eV.		CO4
2	List any four methods for synthesizing the nanomaterials. OR With the help of suitable diagram explain the working of He-Ne Laser?	5	CO5
3	What is pair production? Prove that pair production cannot occurs in empty space?	5 (2+3)	CO4
4	Find maximum kinetic energy in eV of photoelectrons if the work function of the material 2.33 eV and frequency of radiation is 3.19×10^{19} Hz.	5	CO4
	SECTION C 30 marks		
Q	Two case studies 15 marks each subsections	30 Marks	СО
1	 a) Derive the mathematical expression for continuity equation (∇. J = -∂ρ/∂t). b) Write down integral and differential form of all four Maxwell equations. 	15 (7+8)	CO2, CO3
2	 a) Set-up time independent one-dimensional Schrodinger wave equation. b) Using this equation, discuss the solution for a particle trapped in one dimensional potential well (length L) of infinite height. Hence, obtain the normalized wave function 	15 (5+10)	CO4, CO4
	SECTION- D 20 marks		
Q	Long Answer type Questions Scan and Upload (10 marks each) word limit not more than 400 words	20 Marks	СО
1	 a) What should be properties of any valid wave function ψ (r, t). b) Derive a relationship between group velocity (Vg) and phase velocity (Vp). 	10 (5+5)	CO4, CO4
2	 a) With neat figure, derive an expression for numerical aperture (NA) in a step index optical fiber. b) What is the difference between BITS and QUBITS? Explain the role of quantum computing in bio technology (2+3) 	10 (5+5)	CO1, CO5