Name: Enrolment No:	UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM \& ENERGY STUDIES

End Semester Examination (Online) - Dec, 2021

Program: BBA ABD
Subject/Course: Business Mathematics
Course Code: DSQT 1001

Semester: I
Max. Marks: 100
Duration: 3 Hours

Section-A

1.	If $\mathrm{A}=\{1,2,3,4,6\}$ and $\mathrm{B}=\{6,7,8\}$ then $A \cup B$ will be (a) $\{1,2,3,4,6,7,8\}$ (b) $\{6,7,8\}$ (c) $\}$ (d) $\{6\}$	2	CO1
2.	If A and B are two matrices, then which of the following property is true? (a) $\mathrm{A}+\mathrm{B} \neq \mathrm{B}+\mathrm{A}$ (b) $\left(A^{t}\right)^{t} \neq A$ (c) $\mathrm{AB} \neq \mathrm{BA}$ (d) all are true	2	CO1
3.	Derivative of x^{2} is (a) $2 x$ (b) $1 / x$ (c) $1 / 2 x$ (d) None of the above	2	CO1
4.	Value of $\int 2 x^{n} d x$ (a) $2\left(\frac{x^{n+1}}{n+1}\right)+c$ (b) $2 n x^{n-1}+c$ (c) $2\left(\frac{n x^{n-1}}{n-1}\right)+c$ (d) Can't determined	2	CO1
5.	If $x, x+2,2 x$ are in arithmatic progression, then the value of x can be (a) 1 (b) 4 (c) Both (a) and (c) (d) Can't determine	2	CO1
6.	If $\left\|\begin{array}{cc}x & 4 \\ -3 & 2\end{array}\right\|=2$ then the value of x will be (a) 3 (b) 7	2	CO1

	(c) -5 (d) None of the above		
7.	If u and v are the functions of x then by product rule of differentiation (a) $\frac{d}{d x}(u . v)=\frac{d}{d x} u+\frac{d}{d x} v$ (b) $\frac{d}{d x}(u . v)=\frac{d}{d x} u-\frac{d}{d x} v$ (c) $\frac{d}{d x}(u . v)=u \frac{d}{d x} v+v \frac{d}{d x} u$ (d) $\frac{d}{d x}(u \cdot v)=u \frac{d}{d x} u+v \frac{d}{d x} v$	2	CO1
8.	If there is only one Row in a matrix, it is called (a) Row Matrix (b) Column Matrix (c) Square Matrix (d) None of the above	2	CO1
9.	If a, b, c are in arithmatic progression, then which of the following is true (a) $b-a=b-c$ (b) $\mathrm{b}-\mathrm{c}=\mathrm{b}-\mathrm{a}$ (c) $\mathrm{b}-\mathrm{a}=\mathrm{c}-\mathrm{b}$ (d) None of the above	2	CO2
10.	The series $4,16,64,256 \ldots \ldots$. is in (a) Arithmetic Progression (b) Geometric Progression (c) Both (a) \& (b) (d) None of these	2	CO2
Section-B			
Q.No	Question	Marks	COs
11.	Explain the importance of mathematics in business.	5	CO1
12.	Using product rule find the derivative of ($2 \mathrm{x}+3$)(x-7).	5	CO1
13.	Find two terms between $\frac{1}{3}$ and $\frac{1}{81}$ such that the series are in G.P.	5	CO4
14.	Integrate the function $2 x^{2}+3 x-7$ with respect to x .	5	CO4
Section-C			
15.	For the set $\mathrm{A}=\{2,4,6,8\}$ and $\mathrm{B}=\{4,5,7\}$ find $A \cup B, A \cap B, \mathrm{~A}-\mathrm{B}, \mathrm{A} \times \mathrm{B}$ and $\mathrm{B} \times \mathrm{A}$.	10	CO 2
16.	If $A=\left[\begin{array}{ccc}2 & -4 & 3 \\ -3 & -1 & 0 \\ 1 & 3 & 5\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 2 & 3 \\ -3 & 0 & 4 \\ -2 & 2 & -2\end{array}\right]$ then find $\|A B\|$	10	CO2

17.	(a) Find the $10^{\text {th }}$ term of the series $10,8,6,4 \ldots \ldots \ldots \ldots$ (b) Find the $6^{\text {th }}$ term of the series $2,4,8,16 \ldots \ldots \ldots$. 'OR' Find elasticity of demand of the function $\mathrm{x}=100-5 \mathrm{p}$ at $\mathrm{p}=10$.		

Section-D

18.	Solve the following equation using cramer's rule. $\begin{gathered} x+y+z=20 \\ 2 x+y-z=23 \\ 3 x+y+z=46 \end{gathered}$	15	CO3
19.	(a) If $\mathrm{y}=\frac{x+3}{x-1}$ find $\frac{\mathrm{dy}}{\mathrm{dx}}$ using quotient rule of differentiation. (b) If $y=(x+2)(3 x-4)$ find $\int y d x$ using product rule of integration. 'OR' Find the sum of first 10 terms of an increasing arithmetical progression, the sum of whose first 3 terms is 27 and the sum of their squares is 275 .	15	CO 4

