Name:

Enrolment No:

UNIVERSITY OF PETROLEUM \& ENERGY STUDIES

EndSemester Examination - December, 2021

Program:B.COM (Hons)

Subject/Course: Business Mathematics
Course Code: DSQT1001

Semester:I

Q.No.	Section A (Type the Answers in test box)	$10 \mathrm{Q} \times 2 \mathrm{M}=20 \mathrm{M}$	COs
	Question	Marks	COs
1	a) Find the missing terms in the geometric sequence ..., 4, \qquad , __ \qquad \qquad , 12500, ...	2	$\begin{aligned} & \mathrm{CO} \\ & 1 \end{aligned}$
2	b) Suppose we have the arithmetic sequence $3,8,13,18,23,28,33, \ldots \text { Find } a_{202}$	2	$\begin{aligned} & \mathrm{CO} \\ & 1 \end{aligned}$
3	Which of the following two sets are equal? (a) $A=\{1,2\}$ and $B=\{1\}$ (b) $A=\{1,2\}$ and $B=\{1,2,3\}$ (c) $A=\{1,2,3\}$ and $B=\{2,1,3\}$ (d) $A=\{1,2,4\}$ and $B=\{1,2,3\}$	2	$\begin{aligned} & \mathrm{CO} \\ & 1 \end{aligned}$
4	IF $A=[5,6,7]$ and $B=[7,8,9]$ then $A \cup B$ is equal to (a) $[5,6,7,8,9]$ (b) $[5,6,7]$ (c) $[7,8,9]$ (d) None of these	2	$\begin{aligned} & \mathrm{CO} \\ & 1 \end{aligned}$
5	If $\left[\begin{array}{cc}1-x & 2 \\ 8 & 6\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 8 & 6\end{array}\right]$ then $\mathrm{x}=$ (a) ± 6 (b) 6 (c) -5 (d) 7	2	CO1
6	Differentiate $\sin (3 x+2)$	2	CO1
7	Differentiate $\log (5 x-2)$	2	CO1
8	if $p-1, p+3,3 p-1$ are in $A P$, then p is equal to (a) 4 (b) -4	2	CO1

$\left.\begin{array}{|c|l|l|l|}\hline & \begin{array}{l}\text { (c) } 2 \\ \text { (d) }-2 \\ 9\end{array} & \begin{array}{l}\text { Evaluate the indefinite integral } \\ \left(30 x^{5}+8 x^{3}-12 x^{2}\right) d x\end{array} & 2\end{array}\right]$ CO1

1. Each question will carry $\mathbf{1 5}$ marks

2. Instruction: Write short/ brief notes

	Section-B (Scan and upload)	$4 \mathrm{Q} \times 5 \mathrm{M}=20 \mathrm{M}$	
1.	a) Simplify the matrix operation $\left(\left[\begin{array}{ll} -4 & -1 \\ -6 & -5 \\ -3 & -2 \end{array}\right]+\left[\begin{array}{cc} -3 & -1 \\ -6 & 0 \\ 2 & 4 \end{array}\right]\right) \cdot\left[\begin{array}{l} 4 \\ 0 \end{array}\right]$	5	$\begin{aligned} & \mathrm{CO} \\ & 2 \end{aligned}$
2.	b) Solve the equation $-3 A-\left[\begin{array}{c} -9 \\ -5 \\ -3 \\ 0 \end{array}\right]=\left[\begin{array}{l} -9 \\ -1 \\ 21 \\ -3 \end{array}\right]$	5	$\begin{aligned} & \mathrm{CO} \\ & 2 \end{aligned}$
3.	c) Evaluate the determinant $\left\|\begin{array}{ccc} -4 & -5 & -7 \\ 1 & -6 & -1 \\ 0 & -2 & 1 \end{array}\right\|$	5	$\begin{aligned} & \mathrm{CO} \\ & 2 \end{aligned}$

4.	A manufacturing company finds that the daily cost of producing x items of a product is given by $C(x)=210 x+7000$. If each item is sold for Rs. 350, find the minimum number that must be produced and sold daily to ensure no loss.	5	CO
Q.No.	Section-C (Scan and upload)	$3 \mathrm{Q} \times 10 \mathrm{M}=30 \mathrm{M}$	
1	i) If $\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 4 & 6\end{array}\right] \quad \& \mathrm{~B}==\left[\begin{array}{cc}-1 & 2 \\ 2 & 6\end{array}\right]$ Verify that $A B^{\prime}=B^{\prime} A^{\prime}$ where $B^{\prime} \& A^{\prime}$ are transpose of matrix $\mathrm{B} \& \mathrm{~A}$ respectively.	10	$\begin{aligned} & \text { CO } \\ & 3 \end{aligned}$
2	A company's marginal cost function is given by $M C=100-2 Q+0.6 Q^{2}$. Calculate the cost in increasing production from: 1. 5 to 10 units 2. 10 to 15 units.	10	$\begin{aligned} & \mathrm{CO} \\ & 3 \end{aligned}$
3	a) For the time-independent Markov chain described by the picture below, what is its transition matrix? b) If the initial state is [0.6 0.4] find the state of the system after two periods. OR The average cost function (AC) for a product is given by $\mathrm{AC}=0.006 x^{2}-0.02 x-30+\frac{5000}{x}$; where x is the output. Find (i) the marginal cost function (ii) the marginal cost when 50 units are produced.	10	CO3

| 1 | Let C(x) be the cost of producing x calculators and $\mathrm{C}(\mathrm{x})=1800+10 \mathrm{x}+0.02 x^{2}$ dollars.
 a) Find the marginal cost function.
 b) Find marginal Cost at $\mathrm{x}=500$ and give units.
 c) Find the actual cost of the 501 th calculator and compare with marginal cost at $\mathrm{x}=500$. | CO |
| :--- | :--- | :--- | :--- |

