

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM & ENERGY STUDIES End Semester Examination, December 2021

Course: Supply Chain Modeling, Design and Simulation Program: MBA (LSCM) Course Code: LSCM8026 Semester : III Duration : 3 Hours Max. Marks: 100

IMPORTANT INSTRUCTIONS

1. Each Question will carry equal Marks section wise

Q.No	Section A (Type the answers in test box)	10Qx2M=20Marks	COs
1	The components of fundamental models in AMPL are		CO1
2	problem deals with finding the shortest(Closed) tour in an n city situation.		CO2
3	variables represent the deviations below and above right hand side of the constraints in Goal programming.		CO2
4	The methods for Goal programming problem areand		CO2
5	The full form of AMPL is		CO1
6	problems have applications in communication networks while problems are used for network of pipelines.		CO1
7	The elements of discrete event simulation are,, and		CO2
8	The various types of queueing elements are		CO1
9	 Select all the correct statements a. Aggregate planning is type of dynamic programming b. Equipment replacement problem is type of maximum flow problem c. Length of a system in single server model is equal to length of queue + 1 d. AMPL is used for solving Linear programming problems 		CO1
10	(M/M/4):(GD/10/20) meansas per Kendall's notation.		CO2
	Section B (Scan and upload)	4Qx5M= 20 Marks	

	Show the steps of Mor	nte Carlo sampling	to find the a	urea of the		
11	Show the steps of Monte Carlo sampling to find the area of the following circle:			CO2		
	($(x-3)^2 + (y+2)^2$	$(2)^2 = 16$			
12	Consider a two person zero sum game with the data given below.Player A has two strategies and player B has three strategies.Solve the problem to get steady state payoff. The payoff is for player A.B1B2				CO2	
	A1 1	-3		7		
	A2 2	4		-6		
	For the network below, find the maximum flow from node 1 to node 5					
13		40 2 30	0			CO2
14	Derive the steady state probability for n customers in a system for General Poisson queuing model.					CO3
		3Qx10M=30				
	(Scan and upload)		Marks			
	The following distance matrix is of a 4 city Travelling Salesman Problem. Formulate the problem mathematically.					
	From/To A	B	C	D		
15	A -	13	21	26		CO2
10	B 10	-	29	20		002
	C 30	20	-	5		
	D 12	30	7	-		
16	Cranberry Ltd has an arrival rate of delivery vans of 32 vans during an eight-hour day while an average of five vans can be loaded during an hour. Find the following: a) Utilization factor, b) Average number of customers in the system c) Average queuing time?					CO3
17	Use the Floyd's Algorithm to find the shortest distance from depot Z to depot A					CO3

	Z 15 100 Y 350 Y			
	Sect	2Qx15M= 30 Marks		
		(Scan and upload)		
18	Mingle Groceries operates with manager uses the given schedule number of counters in operation, customers in store. The arrival ra with mean rate of 10 customers p time per customer is exponential Determine the steady state proba probability that there are no cust the expected number of idle count Number of customers in store 1 to 3 4 to 6 More than 6		CO4	
19	A company in Jaipur makes two company wishes to maximize the $3x_2$. Also, the company wishes to as $z_2 = x_1 + 5x_2$. Assuming tha make atleast 40,000 profit and th The sum of the two products $(x_1$ difference $(x_1 - x_2)$ cannot excer using the two methods in goal pr that equal weights are given to b		CO4	