

	e) Intercept $=2 / 3$, slope $=3$		
3	What first derivative $\left(\frac{d y}{d x}\right)$ of any function explains; (a)relative change in variables (change in y in relation to x) (b) absolute change in the variables (c). Both (a) \& (b) (d). None of the above	2	CO1
4	In economics, which of the following are application of optimization; a). Cost minimization (b). Profit maximization (c). Both (a) \& (b) (d). None of the above.	2	CO1
5	Which one of the following is the first derivative of $\log (x)$; (a). $\frac{1}{x}$ (b). x^{2} (c). \sqrt{x} (d). All of the above.	2	CO1
6	Which expansion is represented by the following series $\begin{aligned} & f(x)= \\ & f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\ldots \end{aligned}$ (a). Taylor expansion (b). Maclaurin's Series (c). Both (a) \& (b) (d). None of the above	2	CO1
7	Identify convex in given options a).	2	CO1

	(b). (c). (d). None of the above		
8	If $\pi(q)=R(q)-C(q)($ Where $\pi=$ profit, $R=$ Revenue and C is cost) what is profit maximizing condition a). $\frac{d \pi}{d q}=0$ (b). $\frac{d^{2} \pi}{d q^{2}}<0$ (c). Both (a) \& (b) (d). None of the above	2	CO1
9	If $\left\lfloor\begin{array}{ll}1 & 3 \\ 7 & 8\end{array}\right]=$? a). 0 (b). 13 (c). 11 (d). None of the above	2	CO1
10	Difference between the usage of symbols Δ and δ a). Δ is used to denote change in variable having distinct values (whole numbers) (b). δ is used to denote change in continuous variables (c). 11 (d). None of the above	2	CO1

1	Explain the necessary and sufficient conditions for reaching the optimal solution of any function.	5	CO 2
2	"We can reach optimal value proposition of function by using only first order(first derivative) condition" Defend the statement using appropriate example.	5	CO 2
3	Find two positive numbers whose sum is 300 and whose product is a maximum. 4	Illustrate difference between constrained and unconstrained optimization. Section C	CO 2
	Explain following terms with examples i-optimization ii-objective function iii-constraints iv-decision variables	5	CO 2
5	Find the relative extrema of the function. $y=f(x)=x^{3}-12 x^{2}+36 x+8$	CO 4	
6	Explain the graphical conditions where derivative method for optimization fails. Or	10	CO 4
	Illustrate applications of optimization technique in economics	10	CO 4
1	Explain utility of Hessian Matrix to find the optimal solution.	15	CO 5
2	Calculate the optimal solution for $z=f(x, y)=8 x^{3}-2 x y+3 x^{2}+y^{2}+1$ Or Explain the attitude toward risk using derivative of utility function.	CO5	

ANSWERS

