

## UNIVERSITY OF PETROLEUM & ENERGY STUDIES End Semester Examination (Online) – March, 2021

Program: MA (Eco) Subject/Course: Optimization Course Code:

## Semester: III Max. Marks: 100 Duration: 3 Hours

## **IMPORTANT INSTRUCTIONS**

- 1. The student must write his/her name and enrolment no. in the space designated above.
- 2. The questions have to be answered in this MS Word document.
- 3. After attempting the questions in this document, the student has to upload this MS Word document on Blackboard.

| Q.No | Section A (All are compulsory)                                                                                                                                                                                                                                                                                              | Marks | COs |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 1    | The techniques of optimization include<br>a) Marginal analysis<br>b) Calculus<br>c) Linear programming                                                                                                                                                                                                                      | 2     | CO1 |
| 2    | <ul> <li>d) All of the above</li> <li>The equation of a straight line is 2x+3y=6. Which of the following is true of the intercept and slope of this line?</li> <li>a) Intercept=6, slope = 2/3</li> <li>b) Intercept=2, slope = -2/3</li> <li>c) Intercept=6, slope = -2/3</li> <li>d) Intercept=3, slope = -2/3</li> </ul> | 2     | CO1 |

|   | e) Intercept= $2/3$ , slope = 3                                                                                                                                                                                                                                                                         |   |     |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| 3 | <ul> <li>What first derivative (<sup>dy</sup>/<sub>dx</sub>)of any function explains;</li> <li>(a)relative change in variables (change in y in relation to x)</li> <li>(b) absolute change in the variables</li> <li>(c). Both (a) &amp; (b)</li> <li>(d). None of the above</li> </ul>                 | 2 | CO1 |
| 4 | <ul> <li>In economics, which of the following are application of optimization;</li> <li>a). Cost minimization</li> <li>(b). Profit maximization</li> <li>(c). Both (a) &amp; (b)</li> <li>(d). None of the above.</li> </ul>                                                                            | 2 | CO1 |
| 5 | Which one of the following is the first derivative of log(x);<br>(a). $\frac{1}{x}$<br>(b). $x^2$<br>(c). $\sqrt{x}$<br>(d). All of the above.                                                                                                                                                          | 2 | CO1 |
| 6 | Which expansion is represented by the following series<br>$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots$ (a). Taylor expansion<br>(b). Maclaurin's Series<br>(c). Both (a) & (b)<br>(d). None of the above | 2 | CO1 |
| 7 | Identify convex in given options       a).                                                                                                                                                                                                                                                              | 2 | CO1 |

|    | (b).                                                                                                                                                                                   |          |          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
|    | (c).                                                                                                                                                                                   |          |          |
|    | (d). None of the above<br>If $\pi(q) = R(q) - C(q)$ (Where $\pi = profit$ , $R = Revenue$ and $C$ is cost) what is profit maximizing condition                                         |          |          |
| 8  | a). $\frac{d\pi}{dq} = 0$<br>(b). $\frac{d^2\pi}{dq^2} < 0$                                                                                                                            | 2        | CO1      |
|    | <ul> <li>(c). Both (a) &amp; (b)</li> <li>(d). None of the above</li> <li>1 3</li> </ul>                                                                                               |          |          |
|    | $If \begin{bmatrix} 1 & 3 \\ 7 & 8 \end{bmatrix} = ?$<br>a). 0                                                                                                                         |          |          |
| 9  | (b). 13                                                                                                                                                                                | 2        | CO1      |
|    | <ul><li>(c). 11</li><li>(d). None of the above</li></ul>                                                                                                                               |          |          |
|    | Difference between the usage of symbols $\Delta$ and $\delta$                                                                                                                          |          |          |
| 10 | <ul> <li>a).Δ is used to denote change in variable having distinct values (whole numbers)</li> <li>(b). δ is used to denote change in continuous variables</li> <li>(c). 11</li> </ul> | 2        | CO1      |
|    | (d). None of the above                                                                                                                                                                 |          |          |
|    | Section B (All are compulsory)                                                                                                                                                         | <u> </u> | <u> </u> |

| 1 | Explain the necessary and sufficient conditions for reaching the optimal solution of any function.                                                             | 5  | CO2 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| 2 | "We can reach optimal value proposition of function by using only first order(first derivative) condition" Defend the statement using appropriate example.     | 5  | CO2 |
| 3 | Find two positive numbers whose sum is 300 and whose product is a maximum.                                                                                     | 5  | CO2 |
| 4 | Illustrate difference between constrained and unconstrained optimization.                                                                                      | 5  | CO2 |
|   | Section C                                                                                                                                                      |    |     |
| 4 | Explain following terms with examples<br>i-optimization<br>ii-objective function<br>iii-constraints<br>iv-decision variables                                   | 10 | CO4 |
| 5 | Find the relative extrema of the function.<br>$y = f(x) = x^3 - 12x^2 + 36x + 8$                                                                               | 10 | CO4 |
| 6 | Explain the graphical conditions where derivative method for optimization fails.<br>Or<br>Illustrate applications of optimization technique in economics       | 10 | CO4 |
|   | Section D                                                                                                                                                      |    |     |
| 1 | Explain utility of Hessian Matrix to find the optimal solution.                                                                                                | 15 | CO5 |
| 2 | Calculate the optimal solution for $z = f(x, y) = 8x^3 - 2xy + 3x^2 + y^2 + 1$<br>Or<br>Explain the attitude toward risk using derivative of utility function. | 15 | CO5 |

## ANSWERS