UNIVERSITY OF PETROLEUM \& ENERGY STUDIES

End Semester Examination, December 2021

Course: Operations Research
Program: BBA (FAS)
Course Code: DSQT2006

Semester: III
Duration: 3 Hours
Max. Marks: 100

IMPORTANT INSTRUCTIONS

1. Each Question will carry equal Marks section wise

Q.No	Section A (Type the answers in test box)	10Qx2M=20Marks	COs
1	\qquad deals with decision situations in which two intelligent opponents with conflicting objectives are vying to outdo each other.		CO1
2	The different types of inventory costs are		CO1
3	\qquad simulation estimates stochastic or deterministic parameters based on random sampling.		CO2
4	\qquad algorithm is used to solve the assignment problem a) Dantzig-Wolfe b) Hungarian c) Lagrangian d) Bayesian		CO1
5	Assuming there are no other changes to the input parameters, the change in the objective function value per unit increase to a right hand side of a constraint is called the \qquad a) What if analysis b) Sensitivity analysis c) Shadow Price d) Feasible solution		CO1
6	What if analysis in spreadsheet comprise of which of the following features a. Goal seek b. Scenario Manager c. Data Table d. Conditional Formatting		CO1
7	\qquad problem deals with finding the shortest(Closed) tour in an n city situation.		CO 2
8	The various types of replacement problems are		CO1
9	A straightforward way to solve TSP is		CO1
10	The two types of local search heuristics to solve TSP are ___ and		CO 2

	a) How sh the tota	the jo n hou	allocat	er	ee,	as to	nimize		
17	Consider a firm having two factories. The firm is to ship its products from the factories to three retail stores. The number of units available at factories X and Y are 300 and 400 , while those demanded at retail stores A, B and C are 200, 150 and 350 , respectively. Rather than shipping the products directly from factories to retail stores, it is asked to investigate the possibility of transshipment. The transportation cost(in rupees) per unit is given the table below								CO 3
			Factory		Retail Store				
			X	Y	A	B	C		
	Factory	X	0	8	7	8	9		
		Y	6	0	5	4	3		
	Retail store	A	7	2	0	5	1		
		B	1	5	1	0	4		
		C	8	9	7	8	0		
	Section D(Scan and upload)							$\begin{gathered} \text { 2Qx15M=30 } \\ \text { Marks } \\ \hline \end{gathered}$	
18	A furniture company has plants in cities A, B, and C, which ship to four demand locations 1, 2, 3, 4 with transporting costs (in hundred rupees) as shown below:								CO 4
		1	2	3	4				
	A	3	5	4	4		0		
	B	6	8	5	2		0		
	C	1	9	7	3		0		
	Demand	20	60	30	40				
	Determine the initial feasible solution through Vogel Approximation method and optimal distribution that minimize total shipping cost through Modi method.								
19	Assume that the company is going to manufacture the item with the equipment that is estimated to produce 100 units per day. The consumption of the item is 10000 units/year. The cost of the unit thus produced is Rs 3.50 per unit. The setup cost is Rs. 150 per set-up and the inventory carrying charge is 25% of the unit cost. What is the optimum production lot size(Q*)? Assume 250 working days in the year. In the above question, if the average lead-time to receive an order is 9 days, standard deviation of demand is 5 , standard deviation of lead time is 1 day and the customer service level is 90%, find the reorder point.								CO 4

