	UNIVERSITY WITH A PURPOSE UNIVERSITY OF PETROLEUM \& ENERGY STUDIES End Semester Examination, December 2021 Course: Program: BBA-FAS Subject/Course: Spreadsheet Modeling Course Code: DSQT 2005 Semester: III Max. Marks: 100 Duration: 3 Hours Instructions : The Question Paper has 4 Sections, and there is internal choice in Section C		
Q.No	SECTION A - 10Q x 2M = 20 Marks	Marks	CO
Q1	The \qquad models have a specific mathematical structure and thus can be solved by the known mathematical techniques a)Analytical b)Heuristic c)Simulation d)None of these	2	CO3
Q2	If the total investment in stock is limited, then the best order quantity for each item will be (a) equal to the economic order quantity (b) greater than the EOQ (c) less than the EOQ (d) either greater or less than the $E O Q$	2	CO3
Q3	The basic information required for an efficient control of inventory is to do with (a) What items should be stocked? (b) When should an order be placed to replenish inventory? (c) How much should be ordered in each replenishment? (d) all of the above	2	CO3
Q4	If EOQ is calculated, but an order is then placed which is smaller than this, then the variable cost will (a) increase (b) decrease (c) either increase or decrease (d) no change	2	CO3
Q5	The \qquad Excel function returns the count of cells that contain numbers, text, logical values, error values, and empty text (""). a) COUNTA b) COUNT C)COUNTIF d)COUNTBLANK	2	CO3
Q6	Degeneracy occurs while moving quantities in a closed loop when \qquad cells become \qquad at the same time.	2	CO2
Q7	Redundant constraints ___ affect the optimal solutions to the problem	2	CO2
Q8	The \qquad chart in Excel compares values across categories in a circular orientation a)Bubble b) Radar c)Scatter d)Column	2	CO2
Q9	A Random variable expressed in monetary units, its expected value is known as	2	CO2
Q10	In Decision-making, ___ the amount of profit foregone due to uncertainty	2	CO2
	SECTION B - 4Q x 5M = 20 Marks		
Q11	Use the graphical method to solve the following LP problem : Maximize $Z=15 x_{1}+10 x_{2}$ subject to the constraints (i) $4 x_{1}+6 x_{2} \leq 360$, (ii) $3 x_{1} \leq 180$, (iii) $5 x_{2} \leq 200$ and $x_{1}, x_{2} \geq 0$.	5	CO2
Q12	The payoffs (in Rs) of three Acts A1, A2 and A3 and the possible states of nature S1, S2 and S3 are given below :	5	CO4

Q17	Indicate the difference between decision-making under risk, and uncertainty, in statistical decision theory. Also state any two differences between EOL and EVPI					10	CO5
SECTION D - 2Q x 15M = 30 Marks							
Q18	Case Study 1 - Dairy Farm Production A dairy firm has three plants located in a state. The daily milk production at each plant is as follows: Plant $1 \rightarrow 6$ million litres, Plant $2 \rightarrow 1$ million litres, and Plant $3 \rightarrow 10$ million litres Each day, the firm must fulfil the needs of its four distribution centres D_{1}, D_{2}, D_{3} and D_{4}. The minimum requirement of each centre (in million litres) is as follows: $\mathrm{D}_{1} \rightarrow 7, \quad \mathrm{D}_{2} \rightarrow 5, \quad \mathrm{D}_{3} \rightarrow 3, \quad$ and $\quad \mathrm{D}_{4} \rightarrow 2$. Cost (in hundreds of rupees) of shipping one million litre from each plant to each distribution centre is given in the following table:					10+5	CO4
Q19	Case Study 2 -S A soft drink manu products with pro have to undergo p time required on Formulate the lin maximize the pro What is linear pro	Drink turing c margin of ess in th machin Cola 3 3 2 5 program within th mming?	nd of	00 ml and 150 s. 2 per unit re machine. The fo ilable machine Cola 150 ml 2 4 7 m specifying ources, and sol major assumpt	ned cola as its ly. Both the products Table indicates the per week. duct mix which will aphically. limitations?	10+5	CO1

