Name:	
Enrolment No:	US UPES

UNIVERSITY OF PETROLEUM \& ENERGY STUDIES
 End Semester Examination (Online) - December, 2021

Program: MA Economics
Subject/Course: Financial Economics
Course Code: ECON 8032P

Semester: III
Max. Marks: 100
Duration: 3 Hours

Q.No.	Section A (Type the Answers in test box)	$10 \mathrm{Q} \times 2 \mathrm{M}=20 \mathrm{M}$	COs
	Question	Marks	COs
1	The term "present value" refers to the future value of present day money. (a) True (b) False (c) Uncertain	2	$\begin{aligned} & \mathrm{CO} \\ & 1 \end{aligned}$
2	Suppose that we wanted to sum the 2020 returns on ten shares to calculate the return on a portfolio over that year. What method of calculating the individual stock returns would enable us to do this? (a) Simple (b) Continuously compounded (c) Neither approach would allow us to do this validly (d) Either approach could be used and they would both give the same portfolio return	2	$\begin{aligned} & \mathrm{CO} \\ & 1 \end{aligned}$
3	A trader sells 5 units of gold futures at Rs. 16500 per 10 grams. What is the value of his open short position? Unit of trading is 1 Kg and delivery unit is one Kg . a) Rs.82,500 b) Rs. $82,50,000$ c) Rs. $8,25,000$ d) Rs.82,000	2	$\begin{aligned} & \mathrm{CO} \\ & 1 \end{aligned}$
4	Which of the following cannot be an underlying asset for a financial derivative contract? a. Equity Index c. Interest Rate b. Commodities d. Foreign Exchange	2	$\begin{array}{\|l\|} \hline \mathrm{CO} \\ 1 \end{array}$
5	A trader sells three-month call options on 10 units of gold with a strike of Rs. 7000 per 10 gms at a premium of Rs.70. Unit of trading is 100 gms . On the day of expiration, the spot price of gold is Rs.6080/10 gms. What is his net payoff? 1. (-)7000 3. (-)700 2. ($+1,1,000$ 4. (-) 1,000	2	CO1
6	A market where new securities are bought and sold for the first time is known as a \qquad Market.	2	CO1

	a) Primary b) Secondary c) Tertiary d) Capital		
7	The call option price is higher when: a) The sticking price is higher than the stock price b) The sticking price is lower than the stock price c) The option period is shorter d) The option period is longer and the strike price is lower	2	CO1
8	Mr. John invested ₹2000 in gold, which he bought at ₹520 per gram. After two years, he sold them at ₹566 per gram. His annual rate of return from this investment is approximately \qquad A) 4% B) 3.3% C) 4.4% D) 5.4%	2	CO1
9	The yield curve usually slopes upward for the following reason: A) Longer maturity bonds typically pay higher interest rates than bonds with shorter 2maturity B) Longer maturity bonds typically pay lower interest rates than bonds with shorter maturity C) Default risk is higher for shorter maturity bonds D) Longer maturity bonds are not taxable	2	CO1
10	A perpetuity is distinguished from other bonds in that it: a) Never matures b) Pays continuously compounded interest c) Is issued only by the U.S. government d) Will be used to purchase another bond when it matures unless the owner specifies otherwise.	2	CO1
Q.No.	Section-B (Scan and upload)	$4 \mathrm{Q} \times 5 \mathrm{M}=20 \mathrm{M}$	
1.	A) The spot price of the market index is $\$ 900$. A 3-month forward contract on this index is priced at $\$ 930$. Draw the payoff graph for the short position in the forward contract. B) The spot price of the market index is $\$ 900$. After 3 months, the market index is priced at $\$ 920$. The annual rate of interest on treasuries is 4.8% (0.4% per month). The premium on the long put, with an exercise price of $\$ 930$, is $\$ 8.00$. Draw the payoff graph for the long put position at expiration	5	$\begin{aligned} & \mathrm{CO} \\ & 2 \end{aligned}$
2.	What are the economic benefits of derivative markets?	5	$\begin{array}{\|l\|} \hline \mathrm{CO} \\ 2 \end{array}$

	$22 / 11 / 2016$	17706.15	18267	-37.6	267		
	$23 / 11 / 2016$	17611.75	18267	-94.4	0		
	$24 / 11 / 2016$	17473.5	18223	-138.25	-44		
	$25 / 11 / 2016$	17839.8	18305	366.3	82		
	Suppose the government is proposing to sell a 5-year bond of ₹1,000 at 8 per cent rate of interest per annum. The bond amount will be amortised (repaid) equally over its life. If an investor has a minimum required rate of return of 7 per cent, what is the bond's present value for him?	10	CO3				

Q.No.	Section-D (Scan and upload)	$2 \mathrm{Q} \times 15 \mathrm{M}=30 \mathrm{M}$	
1	What are the factors, which affect volatility of bond prices? Explain	15	CO 4
2	The capital asset pricing model (CAPM) can be written as $\begin{equation*} E\left(R_{i}\right)=R_{f}+\beta_{i}\left[E\left(R_{m}\right)-R_{f}\right] \tag{1} \end{equation*}$ The first step in using the CAPM is to estimate the Stock's beta using the market model. The market model can be written as $\begin{equation*} R_{i t}=\alpha_{i}+\beta_{i} R_{m t}+u_{i t} \tag{2} \end{equation*}$ Where $R_{i t}$ is the excess return for security i at time $t, R m t$ is the excess return on a proxy for the market portfolio at time t, and $u t$ is an iid random disturbance term. The coefficient beta in this case is also the CAPM beta for security i. Suppose that you had estimated (2) and found that the estimated value of beta for a stock, β^{\wedge} was 1.147 . The standard error associated with this coefficient $\operatorname{SE}\left(\beta^{\wedge}\right)$ is estimated to be 0.0548 . A city analyst has told you that this security closely follows the market, but that it is no more risky, on average, than the market. This can be tested by the null hypotheses that the value of beta is one. The model is estimated over 62 daily observations. Test this hypothesis against a one-sided alternative that the security is more risky than the market, at the 5% level. Write down the null and alternative hypothesis. What do you conclude? Are the analyst's claims empirically verified?. OR Consider a portfolio of 300 shares of firm A worth $\$ 10 /$ share and 50 shares of firm B worth $\$ 40 /$ share. You expect a return of 8% for stock A and a return of 13% for stock B. (a) What is the total value of the portfolio, what are the portfolio weights and what is the expected return? (b) Suppose firm A's share price goes up to $\$ 12$ and firm B's share price falls to $\$ 36$.	15	CO4

What is the new value of the portfolio? What return did it earn? After the price change, what are the new portfolio weights?.

