Name Enro	ment No:								
	UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN								
Subje Code		conomics Semester : III Max. Marks : 100							
	SECTION A								
Q1	Answer all the questions. Each Question will carry 2 Marks	10Qx2 M=20 Marks	СО						
i.	In the weighted average: $\bar{x}_w = \sum_i w_i x_i$ w represents the weights, which must sum to (a) 1 (b) 10 (c) 100 (d) 2i	[2]	CO1						
ii.	Dispersion is the scatteredness of the data series around its (a) average (b) median (c) mode (d) coefficient	[2]	CO1						
iii.	is independent of origin, but not of scale (a) Standard Deviation (b) Mean Deviation (c) Median (d) Mean	[2]	CO1						
iv.	Standard score gives us the number of standard deviations, a particular observation lies below or above the (a) Mean (b) Standard Deviation (c) Mean Deviation (d) Median	[2]	CO1						
v.	Two events are dependent if the outcome or occurrence of the firstthe outcome or occurrence of the second. (a) affects (b) does not affects (c) is greater than (d) is less than	[2]	CO1						
vi.	Spin a spinner numbered 1 to 7, and toss a coin. What is the probability of getting an odd number on the spinner and a tail on the coin?(a) 2/7(b) 2/5(c) 2/3(d) 2/9		CO1						

vii.	The conditional p	orobability	y of E g	given F,	denot	ed by			·	[2]	CO1
	(a) $Pr(E F)$ (b)	Pr(F E)	(c)	Pr(E.F))	(d) Pr	(E-F)				
viii.	Susan took two te	usan took two tests. The probability of her passing both tests is 0.6. The probability								of [2]	CO1
	her passing the first test is 0.8. What is the probability of her passing the second test given that she has passed the first test?										
	(a) 0.75 (b) 0.65 (c) 0.55 (d) 0.45										
ix.	Arandom variable can take on any value in some interval of values.								[2]	CO1	
	(a) continuous	(b) discr	ete	(c) mi	xed	(d)	corre	lated			
х.	Two random vari	ables X a	nd Y a	re statis	tically	indep	enden	t if aı	nd only if	[2]	CO1
	(a) $f(x, y) = f(x)$	f(y)			(b)	f(x, y)	f(f) = f(f)	x)/f((y)		
	(c) $f(x, y) = f(x)$	(c) $f(x, y) = f(x) + f(y)$ (d) $f(x, y) = f(x) - f(y)$									
							/ /	, , , , , , , , , , , , , , , , , , ,	<i>。</i>		
					ction					4Qx5 M= 20	СО
	Attempt all the qu	uestions.	Each q	uestion	carries	s equal	l mark	s.		M= 20 Marks	CO
Q2	The selling prices	s (in \$1,0	00) of a	a new po	opular	comp	act au	tomo	bile are given here.		CO2
		26.6	25.	3 2	23.8	24	4.0	27	.5		
		21.1	25.		22.6		3.8	25	1023		
		22.6 20.8	27.		26.8 22.4		3.4 7.5	27 23		[5]	
		22.2	23.	8 2	23.2	28	3.7	27	.5		
	Define the modal selling price and calculate the modal selling price from the above										
	data set.										
Q3	Age of 10 subjects from a population of 169subjects are given below:										CO2
		X1 X2	$X_3 X_3$	X4 X5	X6	X7	X_8	X9	X_{10}	[7]	
	-	42 28	28 6	1 31	23	50	34	32	37	[5]	
0.1	Calculate range and coefficient of range.										000
Q4	Find mean absolute deviation of confinement after delivery in the following series:										CO2
	Days of Confinement678910									[5]	
	No. of Patients54432										

Q5	Weights of CEOs of 265 Energy Enterprises are given below. Calculate standard											CO2			
	deviation of their weights.														
	Class Interval of weights	66-06	100-109	110-119	120-129	130-139	140-149	150-159	160-169	170-179	180-189	190-199	200-2009	[5]	
	Frequency	1	1	9	30	42	66	47	39	15	11	1	3		
	Section C Attempt all the questions. Each question carries equal marks.												3Qx10 M=30 Marks		
Q7.	 a) A single card is chosen at random from a standard pack of 52 playing cards. What is the probability of choosing a king or a club? b) A school survey found that 7 out of 30 students walk to school. If four students are selected at random without replacement, what is the probability that all four walk to school? 												[10]	CO3	
Q8.	 a) On New year's Eve, the probability of a person having a car accident is 0.09. The probability of a person driving while intoxicated is 0.32 and probability of a person having a car accident while intoxicated is 0.15. What is the probability of a person driving while intoxicated or having a car accident? b) A nationwide survey showed that 65% of all children in the United States dislike eating vegetables. If 4 children are chosen at random, what is the probability that all 4 dislike eating vegetables? 											[10]	CO3		
Q9	4 dislike eating vegetables?Suppose that Bob is late one day. His boss wishes to estimate the probability that he traveled to work that day by car. He does not know which mode of transportation Bob usually uses, so he gives a prior probability of 1 in 3 to each of the three possibilities.														
	Mode of transportProbability that Bob is lateCar50%Bus20%Train1%Find1%														
	From the given information calculate P(late) and P(car late).										[10]	CO3			
	OR														
	Explain and analyze the χ^2 (Chi-Square) distribution and discuss its various properties.														

		2Qx15 M= 30	СО									
	Answer all ques	Marks										
Q12	The following variables X and	[15]	CO4									
	3 0.27 0.08 0.16 0											
	6 0 0.04 0.10 0.35 (i) Find out all possible marginal PDF of X and Y. (ii) Compute $E(Y/X = 2)$ and $Var(Y/X = 2)$.											
Q13.	What do you m from a normal y	[15]	CO4									
	Bayes' Theoren inverse. Examin											