

Q5	Weights of deviation of Class Interval of weights Frequency		$\text { f } 26$ $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 6 \\ 0 \\ \hline \\ 1 \\ \hline \end{array}$	s. $\stackrel{9}{7}$	gy 30		es ar g \vdots \vdots 66	give n \vdots i 2 47	6 6 6 6	2 $\stackrel{2}{2}$	late $\stackrel{\infty}{\infty}$ $\stackrel{1}{\infty}$ -1	anda oे $\stackrel{1}{2}$		[5]	CO 2
	Section C Attempt all the questions. Each question carries equal marks.													$\begin{aligned} & 3 \mathrm{Qx} 10 \\ & \mathrm{M}=30 \\ & \text { Marks } \end{aligned}$	
Q7.	a) A single card is chosen at random from a standard pack of 52 playing cards. What is the probability of choosing a king or a club? b) A school survey found that 7 out of 30 students walk to school. If four students are selected at random without replacement, what is the probability that all four walk to school?													[10]	CO3
Q8.	a) On New year's Eve, the probability of a person having a car accident is 0.09 . The probability of a person driving while intoxicated is 0.32 and probability of a person having a car accident while intoxicated is 0.15 . What is the probability of a person driving while intoxicated or having a car accident? b) A nationwide survey showed that 65% of all children in the United States dislike eating vegetables. If 4 children are chosen at random, what is the probability that all 4 dislike eating vegetables?													[10]	CO3
Q9	Suppose that traveled to w usually uses Mode of tran Car Bus Train Find From the giv Explain and	ob k th he ort inf alyz	late t day give rma the	one by a pr \square ion $\chi 2$	day. ar. or p alcu hi-S	bo does abil P(are)	wis not k y of te) a OR istrib	es to ow in 3 Prob P(ca tion			obab ran hree b is var	ortati ossib te	he Bob ities. perties.	[10]	CO 3

	Section D Answer all questions. Each Question carries 15 Marks.	$\begin{array}{\|l} \hline 2 \mathrm{Qx} 15 \\ \mathrm{M}=30 \\ \text { Marks } \end{array}$	CO
Q12	The following table gives the joint Probability Density Function (PDF) of discrete variables X and Y . (i) Find out all possible marginal PDF of X and Y . (ii) Compute $E(Y / X=2)$ and $\operatorname{Var}(Y / X=2)$.	[15]	CO4
Q13.	What do you mean by a normal distribution? How to derive a standard normal variable from a normal variable? Illustrate all steps. OR Bayes' Theorem shows the relationship between a conditional probability and its inverse. Examine the statement with suitable example.	[15]	CO 4

