Name:

Enrolment No:

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

End Semester Examination (Online) – December, 2021

Program: MBA (Finance)

Subject/Course: Financial Econometrics

Course Code: FINC 8009

Semester: 3

Max. Marks: 100

Duration: 3 Hours

IMPORTANT INSTRUCTIONS

This paper has four parts. Answer ALL questions.
 The use of scientific calculators is allowed

	Part A: Answer ALL questions		
	Identify the following statements as True/False and give brief reasons.		
Q1	 a) Regression analysis is concerned with predicting/estimating the mean or average value of the dependent variables. b) Dependence of crop on rainfall and temperature is deterministic in nature. c) Correlation coefficient measures the linear association between variables. d) How the sales of company has changed over the years is an example of 'Time series' data. e) Correlation does not imply causation. 	2 × 5 = 10 Marks	CO1
	Answer the following questions:		
	a) The impact of advertisement expenses on sales is in nature		
	i. Statistical	2 × 5 =	
Q2	ii. Deterministic	10	CO1
	iii. Both statistical and deterministic	Marks	
	iv. Neither of the above		
	b) The following are some of the stylized facts of financial data:		
	i. Non-stationarity		
	ii. Log normal prices		

		Coeff	icient Values	Intercept 22.61	Slope 1.75	t-statistic ?	p-value 0.310		
				Tutoward	C1	4 0404-041	n		
Q5	-		he p-values (2-t not at 5% level.	ailed) giver	i, determine w	hether β_1 and	β_0 are individua	5 Marks	CO2
	_				_		ne the t-statistic		
				•	-	-	provided below f		
Q4	Explai testing	-	you mean by Ty	pe I error a	nd what you n	nean by Type	II error in hypot	hesis 5 Marks	CO2
Q3			gnificance of R ²					5 Marks	CO2
				<u>Part</u>	B: Answer A	LL questions			
		iv.	Neither of the a	above					
			Both statistical		inistic				
		ii.	Deterministic						
		i.	Statistical						
		•	of your calculati	U		e	,		
	e)				tation force us	ing Newton's	law of motion,	the	
			One, more than						
			More than one,						
			More than one, Less than one,		one				
		-	ndent variables	more then	0.00				
	d)		ltiple regression	n model, th	ere 1s/are usua	lly depe	ndent and		
		iv.	Smaller, smalle		. ,				
			Larger, larger						
			Larger, smaller	•					
		i.	Smaller, larger						
		X will	lead to val	lue of Y.					
	,		-	· -			and smaller valu		
	c)				endent) have a	a positive regr	ession beta coef	ficient	
		iv.	None of the abo	ove					

 Generation values
 22101
 100
 0.0010

 Standard Errors
 21.96
 0.065
 ?
 0.000

 Q6
 What are some of the "stylized facts" of financial data? Discuss some of them in brief.
 5 Marks
 CO2

 Part C: Answer ALL questions. Question 9 has internal choice

Q7	The ARIMA coe BIC) for an ARI the values given coefficient value ARIMA(1,0,0) ARIMA(0,0,1) ARIMA(1,0,1) ARIMA(0,0,2) ARIMA(2,0,0)	MA(p,d,q) and comm es, express AIC 1237.02 1378.37 1193.28 1277.17	model wit ent on sele of the mod BIC 1248.99 1390.34 1209.24 1293.13	h a statior oct the bes	AR(1) 0.8936	(d = 0) ar hould be.	e given be	elow. Analyze	10 Marks	CO 3
Q8	As a finance mat in your product 1 the data. You the analysis is as bel a) Commen b) Estimate	nager of Co line. You o en fit the da low:) t on the typ	b. X, you a bserve a se ata in R usi $v_t = 78.15$ pe of ARIN booth sales	re evaluat easonal pa ng the 'fo + y_{t-12} - IA model	ing the m ttern in ye precast' pa + $\varepsilon_t - 0.2$ used (3 1	onthly sa our data. ackage. T 780 ε_{t-12} Marks)	You notic he final m	e seasonality i odel from the	n	CO 3
Q9		nt on "Best ns that mus	e Box-Jenk Linear Unl t be met fo	C biased Est r a regress	odology o)r, iimator" (sion to be	of time se BLUE) in BLUE.	n regressio	on. Describe th	10 Marks	CO 3
Part C: Answer ALL questions. Question 11 has internal choiceYou are fitting an Arbitrage Pricing Theory (APT) type model to explain the impact of Excess Market Returns or EMR ($R_m - R_f$), changes in term-spread of Government Security (SPREAD), and changes in inflation rate (INF) on the excess stock returns or SR of Co. XYM ($R_{XYM} - R_f$). The ANOVA table and coefficient values from the final model is given below:ANOVAMean SFSignificance FRegression31.2248??1.01×10 ⁻³⁴ Residual3792.3141?										CO4

<u>г г</u>	1											
	Total		382	3.5389								
				Coefficients	s Stat	ndard Error	t S	Stat	P-value]		
		Intercep	ot	0.0094		0.0040		?	0.0201			
		EMR		1.2763		0.0920		?	1.14×10 ⁻³⁵			
		SPREA	D	0.0475		0.0171		?	0.0057			
		INF		0.0219		0.0121		?	0.0707			
	b)	F-statist Determi Write th	tic. Comme ine the R-S ne regressio	ent on the sig quare of the on equation a = -0.055; INI	nifican regress nd fore F = 0.40	ion (MSR) and ce of the regr ion and interp cast the excess 030 (6 Marks) of the follow	ession pret the ss stocl	model. (e same (4	(5 Marks) Marks)	ine the		
	A)	portfolio regressi Intercep	o of investr on coefficie	nent against ents: Coeffi -0	an inde		tract.	-	-			
Q11	B)	ii) iii) Miss X price of months (ADF) t	squares (SS 0.001235. (Determine Write down interval for DF and san Marks) is the finan jet fuel for and fit an A test on the f model bas	SE) is 0.0059 (5 Marks) the F-statistic the regression the regression of the regression of the next modes ARIMA modes fuel prices at	98 and c (no D on equ on slop 2.0003 of an ai nth. Mis el. Mis level a	-Square of the the regression OF will be pro- ation and dete e if the values with a probal Or , irlines compar- iss X obtains as X conducted and at first diffute series. The	n sum vided). ermine of t-d bility of hy and the jet d Augr Ference	of square . (3 Mark the 95% istribution of 2.5% (would life fuel price mented I e. The es	es (SSR) is (cs) confidence on for the gi (on either ta ike to foreca tes for the p Dickey-Fullo timate of th	e ven il). (7 ast the ast 36 er e	15 Marks	CO4

	$\hat{y}_t = y_{t-1} + 0.0055 + 0.737(y_{t-1} - y_{t-2})$	
Where, \hat{y}_t is provided:	the estimated value of jet fuel prices. The following p-values for ADF test is	
At level: Dic	key-Fuller = -1.5349 , Lag order = 4, p-value = 0.7641	
At first diffe	rence: Dickey-Fuller = -4.0065 , Lag order = 4, p-value = 0.0148	
Further, Mis	s X knows that the oil prices for $y_{t-1} = 57.34 per barrel and $y_{t-2} = 58.77 .	
i)	Interpret the results of ADF test and determine which series was used by Miss X and why. (5 Marks)	
ii)	Explain the idea behind 'stationarity' of time-series data. Comment on how you will make a non-stationary data stationary. (5 Marks)	
iii)	Interpret the above model. What would be the next month jet fuel prices if the above model is used? (5 Marks)	