DESIGN & SIMULATTION OF SOUR GAS TREATMENT PLANT USING SULFINOL & DIPA

(A Report on Dissertation II)

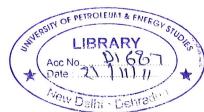
Submitted as a part of course work in M. Tech (Gas Engineering)

By Prakash Mukhopadhyay,

B. E (Chemical Engg.)

Under the Guidance of

Mr. J. S. Prasad, Associate Professor UPES - Rajahmundry



COLLEGE OF ENGINEERING STUDIES UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Regional Centre: Rajahmundry Andhra Pradesh-533 294 2008-2009

UPES - Library
DI687

MUK-2009MT

DESIGN & SIMULATION OF SOUR GAS TREATMENT PLANT USING SULFINOL & DIPA

A Project report submitted to the University of Petroleum and Energy Studies-Rajahmundry campus in partial fulfillment of the requirement for the degree of

MASTER OF TECHNOLOGY (GAS ENGINEERING)

Chair of Committee:
Committee Members:
1. External Examiner: (RUPOM MUKHERJEG),
2. Internal Examiner:
3. Internal Examiner: \(\mathcal{Y} \)
Head of Department:
Centre Director: Alemba

Approved by

DECLARATION

This is to declare that the project report entitled "Design & Simulation of Sour Gas Treatment Plant using Sulfinol & DIPA" has been prepared and submitted by me in all aspects, in partial fulfillment of the requirement for the award of the degree of Master of Technology [Gas Engineering] in University of Petroleum and Energy Studies-Rajahmundry.

The content of this report has not been submitted to any university or institution by me for the award of any degree or diploma.

Rajahmundry Date:

Mr. Prakash Mukhopadhyay

R030307009 M. Tech (GE)

UPES - Rajahmundry

CERTIFICATE

This is to certify that the project work entitled "Design & Simulation of Sour Gas Treatment Plant using Sulfinol & DIPA" being submitted by Mr. Prakash Mukhopadhyay (R030307009), in partial fulfillment of the requirement for the award of the degree of Master of Technology [Gas Engineering] in University of Petroleum and Energy Studies-Rajahmundry, is a bonafide project work carried out by him under my guidance.

Rajahmundry
Date: 12 or 09

Mr. J. Sarada Prasad Associate Professor UPES - Rajahmundry

ACKNOWLEDGEMENTS

First of all I acknowledge, the grace of God the Almighty, in this arduous journey.

I would like to thank my **parents** for their love, care and support without which I wouldn't have been able to complete the project.

I avail this opportunity to thank Prof. K. V. Rao, Academic Head, College of Engineering, UPES, Rajahmundry and Dr. K V Mohana Rao, Centre Director, UPES, Rajahmundry for successful completion of this project.

I express my deepest sense of gratitude to Mr. J. S. Prasad, Associate Professor, UPES, Rajahmundry for his guidance and inspiration throughout this project. It has been an experience of great pleasure and satisfaction.

Finally I express sincere thanks to all my colleagues, who helped to complete this arduous task directly or indirectly.

Prakash Mukhopadhyay

EXTENDED ABSTRACT

The objective of this project is to design a sour gas treatment plant using appropriate solvent, thereby it is divided into two parts.

Part – 1 consists of natural gas with a flow rate of 60MMSCFD (2988.27 Kgmol/hr) with 9 mole% H₂S. Assuming the outlet H₂S in the Natural gas required is 4ppm then using the process selection figures, the suitable solvents for treating this gas stream are Sulfinol-D, Sulfinol-M, DIPA, MDEA, & ADIP.

Sulfinol, as known in basic form consisting of DIPA & Sulfolane is selected as the solvent for the design. The process chemistry of Sulfinol is explained and the equipments involved in the flow sheet are described.

Gas properties like molecular weight, specific gravity, compressibility and density are calculated. For initial separation of liquid (i.e., 2000 BOPD) a vertical separator is designed. Absorption tower is assumed to operate at 973 psia and 109°F. Sulfinol circulation rate, tower diameter, weir height, Clear liquid Residence Time (CLRT), No of real trays required and shell thickness required for absorption are calculated. After absorption tower, a Flash-drum to vent off the absorbed gases by reducing the pressure to 80.85psia is sized (diameter and length of flash drum is calculated). Two heat exchangers, one for heat transfer between rich/lean solvent and the other for reducing the temperature of lean solvent (after exchanging heat with rich solvent) such that the temperature is approximately 5.5°C (10°F) above inlet gas temperature using cooling water are sized (heat transfer area required for both exchangers is calculated). Stripping tower is assumed to operate at 5 kgr/cm² and 120°F. Steam circulation rate, tower diameter, weir height, No of real trays required, and shell thickness required for absorption are calculated

₽}\

Part – 2 consists of simulation of acid gas treatment plant using DIPA as a solvent on HYSYS. Natural gas 20.0786 MMSCFD (1000 kg-mole/hr) natural gas flowrate with is pressure of 1000 psia and at a temperature of 109.4°F is considered for sweetening. During the sweetening process H₂S is to be removed from that present in natural gas to tolerable specifications. In the present case H₂S is reduced from an initial composition of 0.09 to 2*10⁽⁻⁶⁾ (mole fraction basis); which is 9 % by mole in sour gas to 2*10⁽⁻⁴⁾ % by mole in the sweet gas.

CONTENTS

No.	Topic	Page No
1.	INTRODUCTION	1
2.	SULFINOL (Material Property Sheet)	4
3.	LITRATURE SURVEY PHYSICAL PROPERTIES OF SOLVENTS	5
4.	METHODOLOGY OF PROCESS SELECTION	9
5.	METHODOLOGY OF CHOOSING SULFINOL	14
6.	METHODOLOGY FOR PROCESS CHEMISTRY OF SULFINOL	15
7.	SULFINOL AS THE SOLVENT	17
8.	SCHEMATIC DIAGRAM OF SULFINOL TREATING SYSTEM	18
9.	DESCRIPTION OF FLOWSHEET	19
10.	MASS TRANSFER FUNDAMENTALS	21
11.	DESIGN CALCULATIONS .	25
11.1.	Vertical separator design	30
11.2.	Absorber design	34
11.3.	Flash drum	54
11.4.	Heat exchanger design	56
11.5.	Cooler design	60
11.6.	Stripping column design	62
12.	MATERIAL BALANCE	74
13	PUMP CALCULATIONS	76

14.	COMPARISION OF TRAY TYPES	81
15.	RESULTS	85
16.	ENHANCED CORRELATIONS	88
17.	SIMULATION ON HYSYS	97
18.	BRIEF DISCUSSION	99
19.	CONCLUSIONS	101
20.	REFERENCES	102
21.	APPENDIX	104

LIST OF FIGURES

No.	Caption	Page No
1.	Selective removal of H ₂ S in absence of CO ₂	10
2.	Selective removal of H2S in presence of CO ₂ .	11
3.	Selective removal of CO ₂ in absence of H ₂ S	12
4.	Simultaneous removal of H ₂ S & of CO ₂	13
5.	Schematic diagram of typical amine treatment plant	18
6.	Mass transfer in tray	23
7.	Equilibrium solubility data	36
8.	Flooding velocity, sieve plates	38
9.	Single Tray	41
10.	Sieve Tray arrangement	41
11.	Weep point correlation	42
12.	Weep point correlation	45
13.	Fractional Entrainment factor	47
14.	Efficiency of the Tray	48
15.	Flooding velocity sieve plate	65
16.	Efficiency of the Tray	67
17.	Process flow sheet	76
18.	Centrifugal pump selection guide	75
19.	Chart for finding the diameters of valve trave	82

20.	Flooding velocity, sieve plates	83
21.	Gas – Solvent Flowrate	89
22.	Operating Pressure - Gas Flow Rate - Sulfinol Flow Rate	90
23.	Gas Flow Rate - Sieve Tray Diameter - Bubble Cap Tray Diameter	91
24.	Operation Pressure - Gas Flow Rate - Sieve Tray Diameter	92
25.	Operation Pressure - Gas Flow Rate - Bubble Cap Tray Diameter	93
26.	Operation Pressure - Gas Flow Rate - Pump Differential Head	94
27.	Operation Pressure - Gas Flow Rate - Pump Power	95
28.	Developed PFD for DIPA plant using HYSYS	104

LIST OF TABLES

No	Title	Page No
1.	DIPA, Sulfolane properties	1
2.	Physical properties of amine solvents	8
3.	Effect of solvent composition on viscosity	15
4.	Solvent circulation advantage as change of water percent	16
5.	Hydrocarbon rejection advantage by water percent change	16
6.	Heat transfer advantage by water percentage change	16
7.	Sulfinol M & Sulfinol D comparison	17
8.	Experimental outcomes for sulfolane replacement	20
9.	Sour gas properties	28
10.	Sour & sweet gas composition & flow rate	37
11.	Sweet gas properties	38
12.	Piping velocity range from thumb rule	77
13.	Suction calculation of pump	79
14.	Discharge calculation of pump	80
15.	Tray diameter comparison	84

1. INTRODUCTION

The process which prepares raw natural gas for the market by removing the acidic components, is called "gas sweetening". The legal requirements of natural gas before it reaches the fuel market specifies a maximum H₂S content in the range of 0.25 to 1 grain per 100 SCF (16 ppm) and a total sulphur content no more than 30 grains per 100 SCF (7000 grains = 1 lb, 635 grains per 100 SCF = 1 percent by volume). Natural gas that is transported to the fuel market usually carries a total sulphur content below one grain per 100 SCF. Specifications, such as the above, are fully justified, since hydrogen sulphide is a toxic gas and produces sulphur dioxide as a combustion byproduct.

For acid gas removal Sulfinol Process first appeared in 1965 and offered some very promising features as a gas sweetening method. Patented by Shell Oil (In Nov.2, 1964 by Michael.N.Papadopoulos et al.) and employed in many of their plants, it has shown many advantages surpassing even the conventional MEA system.

Scope - This project consists of two parts.

1

1

In part 1 natural gas of a predefined hypothetical composition with a flow rate 2988 Kgmole/hr (60 MMSCFD) is treated using Sulfinol as a solvent. Initially it is subjected to a counter current absorption with Sulfinol in a contactor operating at 973 psia and 43 °C, where solvent enters from the top and sour gas from the bottom. After absorption process sweet gas leaves the contactor from the top and Rich Sulfinol leaving from the bottom, this rich Sulfinol is passed through a valve to cause a pressure drop of 6119 kPa in the rich Sulfinol stream for subjecting it into the flash drum to remove the acid gases dissolved in Sulfinol. This process consists of using a liquid absorbent comprising 15- 45% by weight of diisopropanolamine, 1- 25% by weight of water and essentially all of the balance being at least one sulfolane (tetrahydrothiophene oxide). In another aspect a liquid absorbent containing 45- 65% by weight of diisopropanolamine, 15- 25% by weight of water and essentially remaining balance being at least one sulfolane. Still in accordance with the process, the water content of

the effluent sweet gas from the absorption step is substantially reduced by coabsorbtion wih the acid gases and it is further minimized by scrubbing with a slipstream of the same mixture of solvent minus substantially all of the specified water content originally present in the mixed absorption solvent.

1

3

In part 2 HYSYS simulation is done for sweetening natural gas of same composition but with flow rate 1000 Kgmole/hr (20.0786 MMSCFD) using DIPA (Di-Iso-Propanol-Anime) which is initially subjected to a counter current absorption with DIPA in a contactor operating at 1000 psia and 43 °C, where solvent enters from the top and sour gas from the bottom. After absorption process sweet gas leaves the contactor from the top and Rich DIPA leaving from the bottom, this rich DIPA is passed through a valve to cause a pressure drop of 6088.07 kPa in the rich DIPA stream for subjecting it into the flash drum followed by a heat exchanger.

The regeneration column is getting feed at 80 psia and 200°F to strip the acid gases present in the solvent. Heat of regeneration is provided by a reboiler providing 1.431*10⁽⁷⁾ KJ/hr. A condenser is provided at the top of the stripper to recover the solvent vapors regenerated in the process, heat removed is 4.518*10⁽⁶⁾ KJ/hr. Acid gases leave stripper from the top and lean DIPA from the bottom.

A cooler is provided for cooling the lean DIPA to a temperature approximately 5.5°C above the temperature of the sour gas to the absorber, heat removed in the present case is 9.291*10⁽⁶⁾ KJ/hr. A pump is required to provide sufficient head to lean solvent to enter the contactor for absorption; in the present case 103.1 KW power is required.

The results are given in the datasheets of the equipments. For the present case result outputs are attached in the appendix.

Contrasted to the use of so-called "chemical solvent" (involving the formation of salts or other decomposable reaction products), certain classes of chemicals are regarded as "physical solvents". These includes such chemicals as glycols which appear to act in a purely physical manner, absorbing acid gasses physically without the formation of any

apparent reaction product. Mixtures of glycols with amines are known, particularly for treatment of liquid hydrocarbon products or the removal of mercaptans, H₂S and other acidic substance.

<u>Limitations</u> --Aqueous dispertion of glycols are no better in this respect and , moreover, may exhibit extreme corrosiveness toward processing equipment. One of the problems encountered, especilly in the processing of gases initially having high partial pressure of acid components, is efficient removal of entire acid component content both at the time the gas contains relatively high partial pressure of acid gas and after removal of the major proportion, i.e, at the time when the gas contains acid gases only at a relatively low partial pressure. None of the absorbents are efficient in both respects.

·*>)

Another disadvantage of the use of aqueous solutions is the necessity for a separate dehydration step, since such absorbents donot selectively remove water at the same time they absorb acidic gases such as hydrogen sulfide. Since water cannot be tolerated in almost all instances in the sweet gas stream, its removal constitutes an additional cost factor in the processing of gases. A number of problems have arisen in addition to those outlined above. The thermal stability of organic solvents becomes a problem especially during the stripping step wherein the fat solvent is heated to a sufficient temperature to cause a separation of acid gases from the solvent. Under these conditions it is often found that many solvents show undue decomposition constituting a major cost factor in the operation of the process. Another major problem is the differential in temperature between that of the absorption column and in the stripping column. While a large part of this differential can be readily handeled by heat exchanging the various stream involved in the process, nonetheless, it is often necessary to utilise external cooling means to cool the recycle streams. of clean regenerated solvent to the absorber, as well as to employ heating means for heating the fat solvent coming from the bottom of the absorber column to the stripping column.

2. SULFINOL (Material Property Sheet) [1]

Diisopropanolamine (DIPA) is secondary amines, which like the other amines, is used to treat acid gas streams. The major advantage, which offers over other amine processes, is its selectivity for CO₂ in the presence of H₂S. If the gas is contacted at pressures ranging from 5500 to 6900 kPa (800 to 1000 psig), H₂S levels can be reduced to the very low concentrations required by pipelines, while at the same time 40 to 60 percent of the CO₂ present flows through the contactor, un-reacted.

		Diisopropanol Amine	Sulfolane
	Mol. Formulae	(HOC₃H₄)₂NH	C ₄ H ₈ SO ₂
	Mol.wt	133.19	120.7
	Boiling pt. ℃	248.7	285 ·
	Freezing pt. °C	42	27.6
Critical	Pressure, psia	546.3	767.3
constants	Temperature. °C	399.2	545.4
	Specific gravity at 20 ℃	0.989	1.288
	Specific heat at 30 ℃, Btu/lb	0.69	0.35
	Latent heat of vaporization, Btu/lb	185	225.7
	Viscosity at, cp	870, 198, 86 At 30,45,54 ∘C	10.3, 6.1, 2.5, 1.4, .97 At 30,50,100,150,200 ℃
	Refractive Index,	1.4542 at 45 ℃	1.481 at 30 ℃
	Flash pt. ℃	123.8	176.6

Table 1: (DIPA, Sulfolane properties) [1]

3. LITRATURE SURVEY --- PHYSICAL PROPERTIES OF SOLVENTS [1]

Monoethanolamine

* ·

Aqueous monoethanolamine solutions, which were used almost exclusively for many years for the removal of H₂S and CO₂ from natural and certain synthesis gases. are rapidly being replaced by other more efficient systems. particularly for the treatment of high-pressure natural gases. However, monoethanolamine is still the preferred solvent for gas streams containing relatively low concentrations of H₂S and CO: and essentially no minor contaminants such as COS and CS₂. This is especially true when the gas is to be treated at low pressures, and maximum removal of H₂S and CO₂ is required. The low molecular weight of monoethanolamine, resulting in high solution capacity at moderate concentrations (on a weight basis), its high alkality, and the relative ease with which it can be reclaimed from contaminated solutions are advantages, which in many cases more than counterbalance inherent disadvantages. Among the latter, the most serious one is the formation of irreversible reaction products with COS and CS₂, resulting in excessive chemical losses if the gas contains significant amounts of these compounds.

Diethanolamine

Aqueous solutions of diethanolamine (DEA) have been used for many years for the treatment of refinery gases which n o d y contain appreciable amounts of COS and CS₂, besidesH2S and CO. Secondary amines are much less reactive with COS and CS₂ than primary amines, and the reaction products are not particularly corrosive. Consequently, diethanolamine and other secondary amines are the better choice for treating gas streams containing COS and CS₂. The low vapor pressure of diethanolamine makes it suitable for low-pressure operations as vaporization losses are quite negligible. One disadvantage of diethanolamine solutions is that the reclaiming of contaminated solutions may require vacuum distillation. Another disadvantage of DEA is that DEA undergoes numerous irreversible reactions with CO₂, forming corrosive degradation products, and for that -on, DEA may not be the optimum choice for treating gascs with a high CO2 content.

Diglycolamine

The use of aqueous solution of Diglycolamine, 2-(2-aminoethoxy) ethanol, was commercialized jointly by the Fluor Corporation (now Fluor Daniel), the El Paso Natural Gas Company, and the Jefferson Chemical Company Inc. (now the Huntsman Corporation) (Holder, 1966; Dingman and Moore, 1968). The process employing this solvent has been named the Fluor Econamine. process. The solvent is in many respects similar to monoethanolamine, except that its low vapor pressure permits its use in relatively high concentrations, typically 40 to 609, resulting in appreciably lower circulation rates and steam consumption when compared to typical monoethanolamine solutions.

Diisopropanolamine

Diisopropanolamine (DIPA) has been used in the ADIP and Sulfinol processes, both licensed by the Shell International Petroleum Company (SIPM). In the Sulfinol process, diisopropanolamine is used in conjunction with a physical organic solvent. The ADP process, which employs relatively concentrated aqueous solutions of diisopropanolamine, has been described by Bally (1961) and by Klein (1970). It has been widely accepted. primarily in Europe, for the treatment of refinery gases and liquids which, besides H,S and CO₂, also contain COS. It is claimed that substantial amounts of COS are removed without detrimental effects to the solution. A theoretical study of the absorption kinetics hV0hed in the selective absorption of H₂S in DIPA has been presented by Ouwerkerk (1978). Equations for mass transfer with chemical reaction are utilized in the study to develop a computer program which takes into account the competition between H₂S and CO₂ when absorbed simultaneously.

Methyldiethanolamine

Selective absorption of hydrogen sulfide in the presence of carbon dioxide, especially in

cases where the ratio of carbon dioxide to hydrogen sulfide is very high, has recently become the subject of considerable interest, particularly in the purification of non-hydrocarbon gases such as the products from coal gasification processes and Claus plant tail gas. The early work at the Fluor Corp. (now Fluor Daniel) showed that tertiary amines, especially methyldiethanolamine, can absorb hydrogen sulfide reasonably selectively under proper operating conditions involving short contact times (Frazier and Kohl, 1950; Kohl, 1951; Miller and Kohl, 1953). 4 study by Vidaurri and Kahre j1977), in which selective absorption with several ethanolamines was investigated in a pilot and commercial plant, demonstrated that purified gas containing as little as 5 parts per million of hydrogen sulfide could be obtained with absorption of only about 308 of the carbon dioxide contained in the feed gas.

Mixed Amines (Sulfinol)

4

The Sulfinol solvent consists of sulfolane (tetrahydrothiophene dioxide) and an alkanolamine, usually diisopropanolamine (DIPA) or methyldiethanolamine (MDEA), and water. The solvent with DIPA is referred to as Sulfinol-D or simply as Sulfinol, and the solvent with MDEA is referred to as Sulfinol-M. Typically, Sulfinol-D is used when essentially complete removal of both hydrogen sulfide and carbon dioxide and deep removal of carbonyl sulfide is desired. Sulfinol-M is used for the selective removal of hydrogen sulfide over carbon dioxide and the partial removal of carbonyl sulfide (Nasir, 1990). Both Sulfinol solvents are reported to be capable of removing mercaptans and alkyl sulfides to very low levels. The Sulfinol process is licensed by the Shell Oil Company in the U.S. and by Shell International Petroleum Maatschappij (SIPM) in the Netherlands. The process has found wide application in the treatment of natural, refinery, and synthesis gases. The Sulfinol process can meet the requirement for deep C02 removal to 50 ppm for LNG plants, as well as the opposite extreme of bulk C02 removal using flash regeneration.

		1			r	
Property	MEA*	DEA*	TEA*	MDEA*	DIPA*	DGA**
Mol wt	61.09	105.14	149.19	119.17	133.19	105.14
Sp-gravity at	1.0179	1.0919	1.1258	1.0418	0.9890	1.055
(20/20°C)		30/20°C			45/20°C	
Boiling Point(BP),0C				<u> </u>		
BP at 760 .mmHg	171	Decomp	360	247.2	248.7	221
BP at 50 .mmHg	100	187	244	164	167	
BP at 10 .mmHg	69	150	208	128	133	
Vapor Pressure	0.36	0.01	0.01	0.01	0.01	0.01
(.mmHg) at 20°C						
Freezing point, ⁰ C	10.5	28.0	21.2	-21.2	42	-9.5
Solubility in water	Complete	96.4	Complet	Complet	87	Comple
% by wt at 20°C			e	e		te
Absolute Viscosity	24.1	380	1,013	101	198	26
Centipoises at 20°C		(30°C)			(45°C)	(24°C)
Heat of	355	288	230 .	223	184.5	219.1
vaporization		(168.5°C)				
Btu/lb at 1 atm						
Approximate cost	0.59	0.60	0.61	1.40		0.93
\$ / lb ***						
MEA. Manasthanalamina, DEA. Diothanala						

MEA: Monoethanolamine; DEA: Diethanolamine

TEA: Triethanolamine; MDEA: Methyldiethanolamine

DIPA: Diisopropanolamine; DGA: Diglycolamine

Table 2: (Physical properties of solvents) [1]

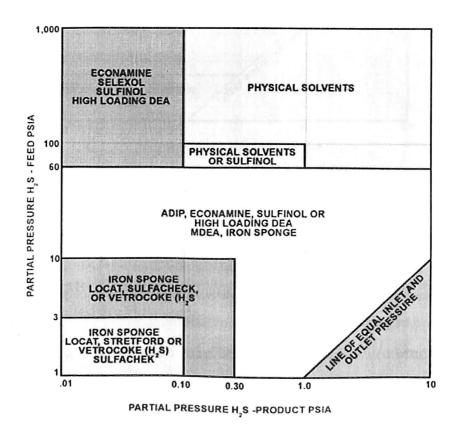
4. METHODOLOGY -- PROCESS SELECTION [8]

Each of the acid gas treating processes has advantages relative to the others for certain applications; therefore, in selection of the appropriate process, the following facts should be considered:

- I. Acid contaminant type present in gas stream.
- II. The degree of removal required for every concentrations of each contaminant.
- III. Amounting treatment required for volume of gas supplied with consideration of temperature and pressure at which the gas is available.
- IV. Feasibility amounting for sulfur recovery.
- V. The Selectively is desirable for removing one or more of the contaminants without removing the others.
- VI. The presence and quantity of heavy lower & higher hydrocarbons and in the gas
- VII. The environmental conditions required at the plant site.

Case 1:- Removal of H₂S

4


For feeds with small acid gas loadings, one of the batch processes should be considered for removal of H₂S. The most common are: iron sponge, Sulfa-Treat, and Sulfa-Check.

As acid gas loadings increase, the disposal and replacement costs become high, and it becomes necessary to choose a process that can be regenerated. The amine systems are most often used for these installation systems. DEA is the most common amine system.

The end product of an amine system is an acid gas stream off the stripper, which must be flared. As acid gas loadings increase, environmental constraints require that this acid gas stream be converted to sulfur. One of the processes that converts acid gas to sulfur, such

as LO-CAT®, SulFerox®, Claus, or Stretford, must be added downstream of the amine system. In some cases, it may be feasible to contact the gas stream to be treated directly with LO-CAT® or SulFerox® solution and eliminate the need to separate the acid gas components from the gas stream with an amine unit.

When a Claus unit is used, it may be necessary to add tail gas cleanup downstream of the Claus unit if acid gas loadings are very high.

Figures 1: Selective removal of H₂S in absence of CO₂ [8]

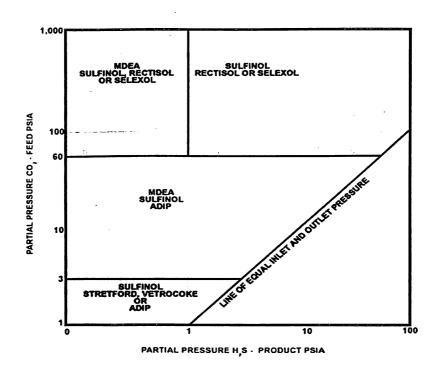


Figure 2: Selective removal of H2S in presence of CO₂.[8]

Case 2:- Removal of CO₂

Removal of CO_2 to meet pipeline quality specifications can be accomplished with an amine-based system since the acid gas from the stripper can be vented (assuming levels of H_2S in the gas being treated are very low).

Removal of CO₂ with gas permeation may be attractive for low volume gas streams in remote areas where the loss of methane is not critical. Permeation systems with a second stage recycle may be competitive with amine systems.

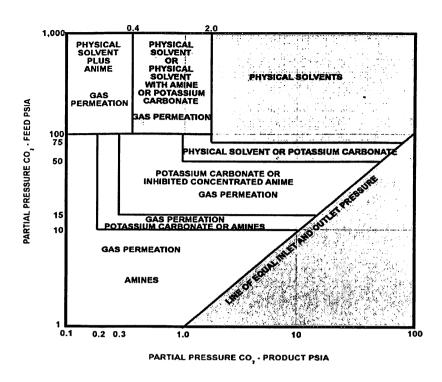


Figure 3: Selective removal of CO₂ in absence of H₂S [8]

Case 3:- Removal of H₂S and CO₂

Most commonly, both H₂S and CO₂ are present and must be removed to meet pipeline quality requirements. In most cases, essentially all of the H₂S will have to be removed, while only a fraction of the CO₂ will have to be removed. Use of a non-selective solvent such as MEA or DEA will require that the equipment be sized to essentially remove all the CO₂ so that the H₂S specification can be achieved. This procedure may be the most economical solution for streams with low CO₂ concentrations.

As CO₂ concentrations in the feed increase, it becomes more economical to use a selective process such as MDEA, Sulfinol®, Selexol®, etc., which will remove a higher percentage of H₂S than CO₂ from a stream.

Another alternative is to use gas permeation or a carbonate system for bulk removal of CO₂ upstream of a non-selective amine unit.

Finally, it may be economical to remove both H₂S and CO₂ to a level where the CO₂ content is acceptable with either a selective or non-selective process, and use a sulfur

removal process (iron sponge, Sulfa-Treat, Sulfa-Check, LO-CAT®, SulFerox®) for final treating of the residue gas.

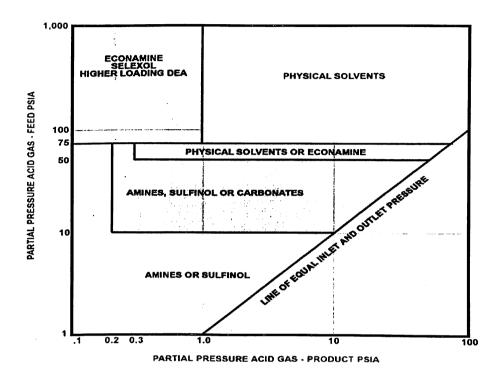


Figure 4: Simultaneous removal of H₂S and CO₂ [8]

Note:-These graphs are not meant to supplement engineering judgment nor to cover every possible contingency. New processes are continuously being developed. Modifications to existing proprietary products will change their range of applicability and relative cost. The graphs do enable a first choice of several potential candidates, which could be investigated to determine which is the most economical for a given set of conditions.

5. METHODOLOGY -- CHOOSING SULFINOL

DESIGN CASE DATA:

Flow rate of gas = 60 MMSCFD

Pressure = 973 psia

Temperature = 109.4°F

H2S content = 9 mole %

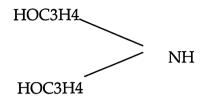
PROCESS SELECTION STEPS

Step 1:

Calculate the following:

Partial Pressure of H_2S in feed = 973 * 0.09 = 87.569 psi

Partial Pressure of H_2S in product = $973 * 4 * 10^{-6}$ psi = 0.00389 psi


Step 2:

From the appropriate graph i.e fig.1 select the process to be employed

In the present case at pressure near 1000 psig & high H₂S partial pressure, figure shows that Sulfinol, Selexol, Economine or high loading DEA process can be employed.

6. METHODOLOGY -- PROCESS CHEMISTRY OF SULFINOL [21]

Structural formula of DIPA

H₂S & CO₂ chemically reacts with DIPA almost instantaneously by proton transfer as is the case with other commonly used amines.

$$RR' NH + H_2S \longrightarrow RR' NH_2 + HS$$
 -----(1)
 $2 RR' NH + CO_2 \longrightarrow RR' NH_2 + RR' NCOO$ -----(2)
 $R_3N + H_2O + CO_2 \longrightarrow R_3 NH + HCO_3$ -----(3)

Therefore there is an advantage to be gained by employing 1-25% by weight of water, 15-45% by weight of DIPA remaining sulfolane. This enables DIPA content to increase to 45-65% with the remainder, i.e, 20-40% by weight of sulfolane, this gives a number of desirable physical property changes that occur which are especially effective at enhancing the process economy. For example

1) Positive effect on viscosity. [10]

Solvent Co	omposition	Viscosity, cp			
Percent	Percent	-			
wt.	wt.				
		Lean	H₂S loaded		
DIPA	H₂O	Solvent	solvent		
40	10	14.2		45	
52	10	26		122	
52	25	14.2		4 5	

Table 3:- (Effect of solvent composition on viscosity)

2) Enhanced sweetening. [10]

	S.C.F of feed gas sweetened per gallon of solvent				
Percent H2S in feed gas	40% w	t. DIPA	52% wt. DIPA		
l creciti 1125 iti recu gas	10% wt.	25% wt.	10% wt.	25% wt.	
	H₂O	H ₂ O	H ₂ O	H ₂ O	
5	125	122	158	154	
25	53	52	67	65	

Table 4:- (Solvent circulation advantage as change of water percent)

1) Hydrocarbon coabsorbtion reduction [10]

			D	$DIPA / H_2O =$		
	DIPA / $H_2O = 40/10$			52/25		
	K	Percent H.C	K	Percent H.C		
		Co absorbed		Co absorbed		
Methane	41	1.2	209	0.24		
Ethane	28	1.7	133	0.37		
Propane	18	· 2.7	84	0.59		
n-Butane	11	4.3	50	0.99		
n-						
Pentane	6.7	7	33	1.55		

Table 5 :- (Hydrocarbon rejection advantage by water percent change)

3) Increase in heat transfer coefficient [10]

Equipment	H_2	H₂O percent wt.		
	10 20			
Lean/ Rich exchanger	70	102	119	
Solvent Coolers	37	85	94	
Reboilers	131	107	207	

Table 6:- (Heat transfer advantage by water percentage change)

7. SULFINOL AS THE SOLVENT (Solubility comparison) [14]

There was a test done by Combustion Engineering Inc. for the solubility of H₂S in sulfinol, were in steps to the test procedure are;

The flow rate of liquid was established as well as regeneration temperatures. The flow rate was established at 10.7 ml/min., and the temperatures at 250 F for the reboiler, 220 F for outlet of U-tube preheated, and 150 F for the condenser;

Pressure at the absorber vessel was established at either 200, 500 or 800 psig and the test gas mixture containing 10% H₂S, 10% CO₂ & 80% CH₄ was flowed into the absorber vessel at the established pressure;

The test gas flow rate was increased until the gas leaving the absorber vessel reached ¼ gr/ 100 scf. The following tabulation was made of the test results;

	Solution	Absorber	Sorbent Flow	Pickup Acid	mol Acid
	Composition	Pressure	Rate	Gas	Gas /
	_			Flow Rate,	mol
	wt %	psig	mol/hr	mol/hr	Sorbent
MDEA	50	500	4.04	9.75	0.09
Sulfolane	25	800	4.04	2.55	0.13
H ₂ O	25				
DIPA	50	200	3.75	0.78	0.21
Sulfolane	25	500	3.75	1.04	0.28
H ₂ O	25	800	3.75	1.31	0.35

Table 7: (Sulfinol M & Sulfinol D comparison) [14]

8. SCHEMATIC DIAGRAM OF SULFINOL TREATMENT SYSTEM

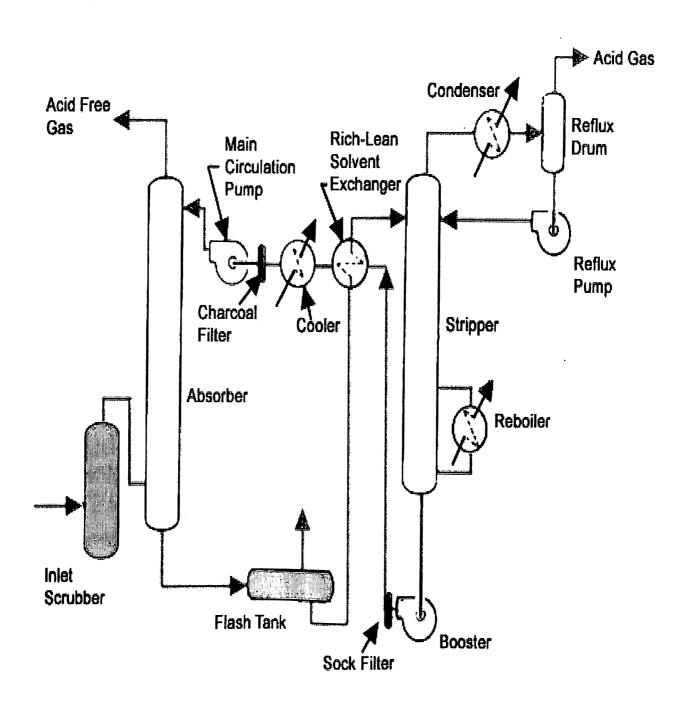


Figure: 5 Schematic Diagram of Typical Natural Gas Treatment System [9]

9. DESCRIPTION OF THE FLOW SHEET

1

The sour gas enters the system through an inlet scrubber to remove any entrained water or hydrocarbon liquids. Then the gas enters the bottom of the amine absorber and flows counter-currently to the amine solution. The absorber can be either a tray or packed tower with conventional packing usually used for 500.mm (20 in) or smaller diameter towers, and trays or structured packing for larger towers. The sweetened gas then leaves the top of the tower. An optional outlet scrubber may be included to recover entrained amine from the sweet gas. Since the natural gas leaving the top of the tower is saturated with water, the gas will require dehydration before entering a pipeline.

The sulfinol solution after countercurrent contact with the gas leaves at the bottom of the absorber. This solution containing the CO₂ and/or H₂S is referred to as the rich solvent. From the absorber, the rich sulfinol flows to the flash tank to remove most of the dissolved hydrocarbon gases or entrained hydrocarbon condensates and also some composition of acid gases absorbed. From the flash tank the rich sulfinol proceeds to the rich sulfinol /lean sulfinol heat exchanger. This heat exchanger recovers some of the sensible heat from the lean sulfinol stream to decrease the heat duty on the sulfinol reboiler and the solvent cooler. The preheated rich sulfinol then enters the sulfinol stripping tower where heat from the reboiler breaks the bonds between the sulfinol and acid gases. The acid gases are removed overhead and lean sulfinol is removed from the bottom of the stripper.

The hot lean sulfinol flows to the rich sulfinol /lean sulfinol heat exchanger and then to additional coolers, typically aerial coolers, to lower its temperature to approximately 5.5°C (10°F) above the inlet gas temperature. This reduces the amount of hydrocarbons condensed in the sulfinol solution when the sulfinol contacts the sour gas. Typically, a side stream of approximately 3 percent of the sulfinol flow rate is taken off after the rich/lean sulfinol heat exchanger and is flowed through a charcoal filter to clean the solution of contaminants. The cooled lean sulfinol is then pumped up to the absorber pressure and enters the top of the absorber. As the sulfinol solution flows down the absorber it absorbs

the acid gases. The rich sulfinol is then removed at the bottom of the tower and the cycle is repeated.

The filters are provided to prevent suspended solids or formed crystals to enter the pump casing. Otherwise the pump casing is prone to damage because of suspended solids.

1) The most common amine processes are monoethanolamine (MEA) and diethanolamine (DEA). Both processes will remove CO₂ and H₂S to pipeline specifications. Among the newer processes, which have been developed are sulfinol, selexol, methyldiethanolamine (MDEA), DIPA. But from the sight of new researches some new solvents having more solubility than sulfinol are found like 4-propanol pyridine, which when used instead of sulfolane gives drastic figures.

	Solution	Absorber	Sorbent Flow	Pickup Acid	mol Acid
	Composition	Pressure	Rate	Gas	Gas /
				Flow Rate,	mol
	wt %	psig	mol/hr	mol/hr	Sorbent
MDEA	50	200	3.86	0.41	0.11
4 PP	25	500	3.86	5.65	0.29
H ₂ O	25	800	3.86	7.75	0.4
DIPA	50	200	3.57	1.31	0.37
4 PP	25	500	3.57	1.83	0.51
H ₂ O	25	800	3.57	2.09	0.59

Table 8: (Experimental outcomes for sulfolane replacement) [14]

10. MASS TRANSFER FUNDAMENTALS [21]

The separation is a rate process rather than one dominated by phase equilibrium. An appreciation of the fact that all alkaline solvents are thermodynamically selective for CO_2 but kinetically selective for H_2S is vital to understanding the importance of mass transfer rates to contactor performance.

Sulfinol being a mixed solvent absorbs by both chemical and physical means, therefore because of physical absorption the regeneration of the solvent becomes easy. On the other hand due to chemical absorption less hydrocarbon loading occurs. Due to this duel characteristics the equilibrium solubility of acid gas depends both on the reaction kinetics with DIPA and as well physical absorption by sulfolane. This implies a duel approach for acid gas mass transfer basics also.

For a given lean-solvent acid-gas loadings a high enough tray count or a deep enough packed bed guarantees that the treated gas leaves the contactor in equilibrium with the lean solvent (or for low solvent rates that the rich solvent leaves in equilibrium with the sour gas). However, as the tray count is reduced (or the bed shortened) the treated gas becomes further and further removed from equilibrium. The thermodynamics of acid gasamine systems is such that CO₂ is the preferred solute because it absorbs by forming a fairly stable chemical bond with the amine. However, the CO₂-amine reaction is of finite rate and, in fact, is quite good in DIPA.

On the other hand, H₂S ionizes instantaneously (to bi-sulfide ion); it does not react with the amine at all, it forms no chemical bonds, and the ionization reaction is immediately reversible. Thus, the chemical reaction kinetics is much faster for H₂S; therefore, CO₂ absorbs more slowly. At short contact times (read low interfacial areas, small tray counts, short packed beds) H₂S absorbs at a higher rate than CO₂, and so H₂S is preferentially absorbed. At long contact times (high interfacial areas, many trays, deep beds), CO₂ absorbs more completely, albeit more slowly, and CO₂ is preferentially absorbed.

Thus, control over selectivity can be achieved by choosing an amine (or a multiple amine mixture) with the right reactivity toward CO2 allowing contact in a column with the right number of trays or the right depth of packing, and choosing the kind of column internals that favor either CO2 or H2S absorption. Selectivity depends on rates-not just reaction rates, but mass transfer rates-which implies dependence on all the factors that affect the mass transfer characteristics and mass transfer performance of the actual physical hardware in which the process is carried out. Equilibrium stage models simply cannot capture these effects. The currency of equilibrium stage models is the number of theoretical stages the currency of internals vendors and gas processors is actual tray counts, types, and asses and volumes and depths of packing of specified size, type and material.

With ideal stages, translation between the two is forever an open question. A true mass transfer rate model, on the other hand, always deals in real trays and real packing there is never a question about how many trays are needed or what depth of packing to install. It is equally important to be able to model solvent regeneration accurately if for no other reason than the fact that the loading of the lean solvent produced by the stripper directly and significantly affects contactor performance. Not only does it affect its ability to meet treated gas specifications, but also the actual treated gas composition. Equilibrium stage models don't work very well here either because the reactions and the tower internals type and details affect mass transfer in just as important ways as in absorption. None of the trays in a stripper come even close to an equilibrium stage, and the desorption rate of each acid gas affects the rate of the other. From a technical standpoint, this mass transfer rate based stripper model treats regenerators every bit as rigorously as absorbers. It produces the best possible predictions of regenerator performance without the need for empirical adjustment. And when absorber and stripper models are tied together in a recycle flow sheet, the best possible prediction of treating plant performance is obtained without applying user-supplied or internally generated empirical corrections of any kind. This complete freedom from empiricism allows the engineer to design and predict the

Performance of new facilities for which absolutely no operating data or field experience exists.

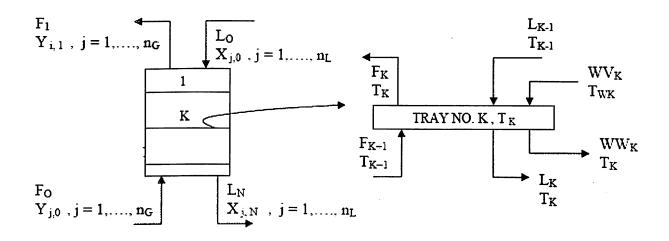


Fig 6: (Mass transfer in tray)

Material balance:

$$F \frac{dYa}{dZ} = \{-Na : x = 0 + Ya [Na : x = 0 + Nb : x = 0]\}APV Aa$$

$$F \frac{dYb}{dZ} = \{-Nb : x = 0 + Yb [Na : x = 0 + Nb : x = 0]\}APV Aa$$

$$10.1$$

Non-absorber material will have a constant contrition in tower, therefore will have

DESIGN CALCULATIONS

11. DESIGN CALCULATIONS

General Design Decisions

The designer is required to consider and determine:

- 1. Entering gas (liquid) flow rate, composition, temperature, and pressure
- 2. Desired degree of recovery of one or more solutes
- 3. Choice of absorbent
- 4. Operating pressure and temperature
- 5. Minimum absorbent (stripping agent) flow rate and actual absorbent (stripping agent) flow rate as a multiple of the minimum rate needed to make the separation.
- 6. Number of equilibrium stages
- 7. Heat effects and need for cooling
- 8. Type of absorber (stripper)
- 9. Height and diameter of absorber (stripper)

Entering gas/liquid flow rates and composition

Entering gas composition and flow rates are generally set from the preceding unit operation, the flash drum in our case. The pressure and temperature are also set from this flash calculation.

INPUT DATA

Gas Composition	mol frac
C ₁	0.73500
C_2	0.08300
C_3	0.02100
i-C ₄	0.00600
n-C4	0.00200
<i>i-C</i> ₅	0.00300

$n-C_5$	0.00800
C ₆	0.00100
C ₇₊	0.00100
N_2	0.05000
H_2S	0.09000
	1.00000

Determination of operating pressure and temperature

- a) In general, operating pressure should be high and temperature low for an absorber, to minimize stage requirements and/or absorbent flow rate and to lower the equipment volume required to accommodate the gas flow.
- b) Operating pressure should be low and temperature high for a stripper to minimize stage requirements or stripping agent flow rate.

y2, Outlet N.G purity required, $H_2S = 4$ ppm

Sulfinol composition used (by .wt)

	DIPA =	133.19	
Molecular wt.	Sulfolane =	120.7	
	Water =	18	
	$H_2S =$	34	
	DIPA =	989	kg/m3
Density	Sulfolane =	1288	kg/m3
-	Water =	1000	kg/m3
	$H_2S =$	102.52913	kg/m3
	DIPA =	198	ср
Viscosity	Sulfolane =	6.1	ср
•	Water =	1	ср
	$H_2S =$	0.3	ср
	DIPA =	0.69	Btu/lb oF
Specific heat	Sulfolane =	0.35	Btu/lb °F
	Water =	1.8013127	Btu/lb °F
	$H_2S =$	0.23839	Btu/lb oF

CALCULATION:

Solvent Properties

				mol. Fraction	on
	DIPA	=		0.172	
	Sulfolane	=		0.190	
	Water	=		0.637	
	H_2S	=		0	
Avg	Viscosity of sulfin	ol	=	36.916	ср
Avg	Specific heat		=	0.430	kcal/kg ℃
Avg	Molecular wt. of s	ulfinol	=	57.377	
Avg	Density of sulfino	1	=	1110.8	kg/m3

SPESIFIC GRAVITY - Gas-specific gravity (yg) is defined as the ratio of the apparent molecular weight of a natural gas to that of air, itself a mixture of gases. The molecular weight of air is usually taken as equal to 28.97 (approximately 79% nitrogen and 21% oxygen).

VISCOSITY - Gas viscosity is a measure of the resistance to flow exerted by the gas. Dynamic viscosity (jug) in centipoises (cp) is usually used in the natural Engineering. Gas viscosity is very often estimated with charts or correlations developed based on the charts. The gas viscosity correlation of Carr, Kobayashi, and Burrows (1954) involves a two-step procedure which is executed bellow. The gas viscosity at temperature and atmospheric pressure is estimated first from

gas-specific gravity and inorganic compound content. The atmospheric value is then adjusted to pressure conditions by means of a correction factor on the basis of reduced temperature and pressure state of the gas.

Gas Prope	rties						
Compound	yi	MWi	y_iMW_i	p _{ci} (psia)	y _i p _{ci} (psia)	T _{ci} , (°R)	y _i T _{ci} (°R)
C ₁	0.735	16.04	11.79	673	494.66	344	252.84
C ₂	0.083	30.07	2.50	709	58.85	550	45.65
C ₃	0.021	44.10	0.93	618	12.98	666	13.99
i-C ₄	0.006	58.12	0.35	530	3.18	733	4.40
n-C4	0.002	58.12	0.12	551	1.10	766	1.53
i-C ₅	0.003	72.15	0.22	482	1.45	830	2.49
n-C ₅	0.008	72.15	0.58	485	3.88	847	6.78
C ₆	0.001	86.18	0.09	434	0.43	915	0.92
C ₇₊	0.001	114.23	0.11	361	0.36	1024	1.02
N ₂	0.050	28.02	1.40	227	11.35	492	24.60
CO ₂	0.000	44.01	0.00	1073	0.00	548	0.00
H₂S	0.090	34.08	3.07	672	60.52	1306	117.54
	1.000	$MW_a =$	21.14	p _{pc} =	649	T _{pc} =	472
		$g_g =$	0.73			· · ·	

Table: 9 (Sour gas properties)

$\rho v =$	63.74	kg/m³
Pseudocritical pressure:	710.78	psia
Pseudocritical temperature:	398.50	R
Uncorrected gas viscosity at 14.7 psia:	0.009	ср
N ₂ correction for gas viscosity at 14.7 psia:	0.00042	ср
CO ₂ correction for gas viscosity at 14.7 psia:	0.000000	сp
H ₂ S correction for gas viscosity at 14.7 psia:	0.00023	ср
Corrected gas viscosity at 14.7 psia (m ₁):	0.009	ср
Pseudo-reduced pressure:	1.37	
Pseudo-reduced temperature:	1.43	
$\ln \left(m_g/m_{1^*}T_{pr} \right)$	0.52	

$a_0 =$	-2.462
a ₁ =	2.97
$a_2 =$	-0.2862
a ₃ =	0.008054
a ₄ =	2.808
a ₅ =	-3.498
a ₆ =	0.3603
a ₇ =	-0.01044
a ₈ =	-0.7933
a ₉ =	1.396
a ₁₀ =	-0.1491
a ₁₁ =	0.00441
a ₁₂ =	0.08393
a ₁₃ =	-0.1864
a ₁₄ =	0.02033
a ₁₅ =	-0.0006095

	μ1
N_2	0.0004215
CO ₂	0
H_2S	0.0002311
HC	0.0179041
TOTAL	0.018
SPGR =	0.729

COMPRESSIBILITY FACTOR - Gas compressibility factor is also called deviation factor, or z-factor. Its value reflects how much the real gas deviate. From the ideal gas at given pressure and temperature. Very often the z-factor is estimated with the chart developed by Standing and Katz (1942). The chart has been set up for computer solution by a number of individuals. Brill and Beggs (1974) yield z-factor values at trate enough for many engineering calculations, which is followed here too.

Tr	=	1.4288449
Pr	=	1.3956401
μr	=	0.5350266
μg	=	0.0221756 Cp
A =		0.3771496
B =		0.5608933
C =		0.0824048
D =		0.9612878
$\mathbf{E} =$		3.8596042
$\mathbf{F} =$		-0.017147
Z =		0.846

11.1 VERTICAL SEPARATOR DESIGN (ref: 3)

FACTORS AFFECTING SEPARATION

Gas and liquid flow rates (minimum, average, and peak)

- Operating and design pressures and temperatures
- Surging or slugging tendencies of the feed streams
- Physical properties of the fluids such as density and compressibility
- Designed degree of separation (e.g., removing 100% of particles greater than 10 microns)
- Presence of impurities (paraffin, sand, scale, etc.)
- Foaming tendencies of the crude oil

Drop Diameter,

Corrosive tendencies of the liquids or gas

Dm =

In vertical separators, a minimum diameter must be maintained to allow liquid drops to separate from the vertically moving gas. The liquid retention time requirement specifies a combination of diameter and liquid volume height. Any diameter greater than the minimum required for gas capacity can be chosen. Figure 4-15 shows the model used for a vertical separator.

140 micron

 $V_t = 0.0119 \left[\left(\frac{\rho_1 - \rho_E}{\rho_E} \right) \frac{d_m}{C_D} \right]^{1/2}$ ----(11.1.1) 0.34 Assume Cd =Respective Vt 0.834 **Terminal Velosity** 198.546 Renolds No. Re =2nd 0.673 New Cd =Respective Vt 0.592 141.03 Re =

3rd

	New Cd = Respective Vt	0.723
	=	0.572
	Re =	136.148
4 th		
	New Cd = Respective Vt	0.729
	=	0.569
	Re =	135.57
5 th		
·	New Cd = Respective Vt	0.729
	=	0.569
	Re =	135.507
6 th		
	New Cd = Respective Vt	0.730
	=	0.569
7 th	Re =	135.498
	New Cd = Respective Vt	0.730
	=	0.569
	Re =	135.497

Gas Capacity Constaint

Terminal

Velocity

$$d^{2} = 5,040 \left[\frac{TZQ_{g}}{P} \right] \left[\left(\frac{\rho_{g}}{\rho_{i} - \rho_{g}} \right) \frac{C_{D}}{d_{m}} \right]^{1/2} --- (11.1.2)$$

Min. Vessel Internal dia d = 55.939 in

 $V_t = V_g$

Final Cd =

Final Vt =

0.730

0.569

Liquid Capacity Constraint

$$(Q = 6.49* 10^{-5}*Q1)$$

$$0.129 \text{ ft}^3/\text{s}$$

$$(\text{Vol} = 4.55 * 10^{-4})*d^2h$$

Min. retention time

$$d2 h =$$

$$t = \frac{\text{Vol}}{O}$$

$$t = \frac{\text{Vol}}{Q}$$
$$d^2h = \frac{t_r Q_1}{0.12}$$

Diameter vs Height for Liquid capacity constraint

			Vol (1/2)	Seam To Seam,	Slenderness ,
tr	d	H	ft3	Leangth	Ratio
3	24	86.80	22.75	13.5	6.783
	30	55.55	22.75	10.96	4.385
	36	38.5	22.75	9.548	3.182
	42	28.34	22.75	8.695	2.484
	48	21.70	22.75	8.141	2.035
	52	18.49	22.75	7.874	1.817
	56	15.94	22.75	7.661	1.641

Choose a reasonable size with a diameter greater than that determined by the gas capacity. A 56in. X 10-ft separator is selected

11.2. ABSORBER DESIGN

This design will not be covered in great detail because it is of little relevance to our process design problem. However, for some applications it may be necessary to use inter-stage cooling and force isothermal condition if the temperature change in the absorption column is great enough to cause large solvent losses.

where

L' -- molar flow rate of pure absorbent

G' -- molar flow rate of pure gas

X -- mole ratio of solute to pure absorbent in liquid

Y -- mole ratio of solute to pure gas in the vapor

$$Y_{n+1}=X_n(L'/G')+Y_1-X^o(L'/G')$$
 ---- (11.2.1)
 $Y_n=X_{n+1}(L'/G')+Y^o-X_1(L'/G')$ ---- (11.2.2)

These equations are called operating line equations and when plotted represent the conditions at the top and bottom of the towers. The slope of the line yields the liquid to gas ratio (L'/G'). Given the gas flowrate, the minimum solvent flowrate can be calculated from the relation: L'min=G'm

Once the minimum solvent flow rate is found, the actual solvent can be found by multiplying the minimum flow rate by a factor of 1.4. To obtain the equilibrium line for the plot, one would use the following derivation. A

balance around a section of the tower will give:

$$y = Y / 1 + Y$$
 ---- (11.2.3)

And similarly for the liquid component:

$$x = X / 1 - X$$
 ---- (11.2.4)

Applying the equilibrium constraint on the system:

$$y = K(x)$$
 ---- (11.2.5)

giving:
$$(Y / 1 + Y) = K(X / 1 - X)$$
 ---- (11.2.6)
solving for Y: $Y = KX / 1 + X - KX$ ---- (11.2.7)

This is the equation that determines the equilibrium line in the plot of the McCabe-Thiele diagram. But in this report tray calculations are done from The Colburn equation (Perry's 7th edition) for the number of equilibrium stages viz:

$$Nt = \log (((y_1 - K^*x_n) / (y_n - K^*x_n))^*(1-1/A) + 1/A) / \log A \qquad ---- (11.2.8)$$

Where, A --absorption factor = L'/mG'

y1 -- mole fraction of solute in entering gas

yn -- mole fraction of solute in exiting gas

Once the theoretical number of equilibrium stages has been determined, the actual number of equilibrium stages can be calculated from the relation:

Where, Eo -- stage efficiency

Na -- actual number of stages

Nt -- theoretical number stages

The stage efficiency can be found to be a complex function of the flow rates of vapor and liquid streams, the geometry and design of the contacting trays, and the properties of the vapor and liquid streams. The stage efficiency can be found multiple ways such as from performance data, semi-theoretical models, scaled up laboratory data, and the O'Connell correlation for plate efficiency. The O'Connell correlation can be used given that the operating conditions fall within those covered by the correlation. Once the efficiency has been estimated, the number of actual stages can be determined.

```
Gas flowrate,
                     G1 in Kg.moles /s
                                                              0.830 Kg.moles/s
                                                             19.664 std. m^3 / s
                                                               0.275 \text{ act.m}^3 / \text{s}
                     as, y1 (H<sub>2</sub>S)
                                                               0.090
                     So, Y1 (H<sub>2</sub>S)
                                                                       mole H<sub>2</sub>S / mole gry gas
                                                             0.0981
                     yn (H_2S)
                                                          0.000004
                     So, Y n (H_2S)
                                                              4E-06
                                                   =
                                                              0.074 Kg.moles H_2S / s
So, H<sub>2</sub>S to be absorbed
Partial pressure of H<sub>2</sub>S in N.G
                                                             87.569 Psia
So, from the graph loading, xs
                                                              14 scf H<sub>2</sub>S / gal solvent
                                                                   Kg.moles H<sub>2</sub>S / gal
                                                          0.016 solvent
                                                          0.228 moles H<sub>2</sub>S / moles solvent
```


Fig 7: Equilibrium solubility data

TOP --- So, Solvent (Sulfinol) feed required, Ls =

267.84 GPM

Ls(1+xs) =

0.401 Kg.moles/s

26.427 Kg/s

Density of rich sulfinol ---

 818.586 kg/m^3

Natural gas	composition:				
	Input (b	ottom)	Output (Top)		
Compound	mole fraction	Kg.moles/s	Kg.moles/s		yi
C_1	0.735	0.61	0.610	80.768	0.808
C ₂	0.083	0.068	0.068	9.120	0.091
C ₃	0.021	0.017	0.0174	2.307	0.023
i-C ₄	0.006	0.004	0.0049	0.659	0.007
n-C ₄	0.002	0.001	0.0016	0.219	0.002
i-C ₅	0.003	0.002	0.0024	0.329	0.003
n-C ₅	0.008	0.006	0.006	0.87	0.009
C_6	0.001	0.0008	0.0008	0.109	0.001
C ₇₊	0.001	0.00083	0.0008	0.109	0.001
N ₂	0.050	0.041	0.041	5.494	0.055
H_2S	0.090	0.074	3.3203E-06	0.0004	0.000
Total	1.000	0.830	0.755	100	1.000

Table: 10 Sour & sweet gas composition

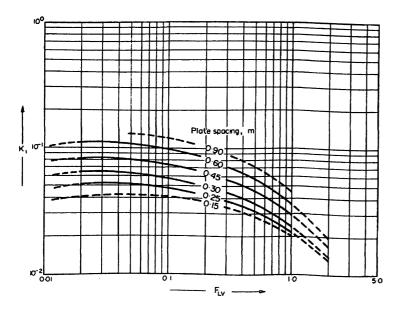

	Output Natural Gas Properties						
Compound	MWi	y_iMW_i	p _{ci} (psia)	y _i p _{ci} (psia)	T _{ci} , (°R)	y _i T _{ci} (°R)	
C ₁	16.04	12.96	673	543.57	344	277.84	
C ₂	30.07	2.74	709	64.67	550	50.16	
C ₃	44.10	1.02	618	14.26	666	15.37	
i-C ₄	58.12	0.38	530	3.49	733	4.83	
n-C ₄	58.12	0.13	551	1.21	766	1.68	
i-C ₅	72.15	0.24	482	1.59	830	2.74	
<i>n</i> -C ₅	72.15	0.63	485	4.26	847	7.45	
C ₆	86.18	0.09	434	0.48	915	1.01	
C ₇₊	114.23	0.13	361	0.40	1024	1.13	
N ₂	28.02	1.54	227	12.47	492	27.03	
H_2S	34.08	0.00	672	0.00	1306	0.01	
Total	$MW_a =$	19.86	$p_{pc} =$	646	$T_{pc} =$	389	
	$g_g =$	0.68			· - '		
	$\rho v = 0$	59.82	kg/m³				

Table 11 : Sweet gas properties

Top,
$$Gs = 0.75$$
 Kg.moles/s
= 0.25 act.m³/s

Flv bottom =
$$(L/G)*(\rho v / \rho l)^5 = 0.360$$

Flv top =
$$(L/G)^*(\rho v / \rho l)^5$$
 = 0.290

Typical design values of Kv for Sieve, Bubble-Cap, and Valve Plates

Fig 8: (Flooding velocity, sieve plates)

So. Base Uf =
$$Kv * ((\rho l - \rho v)/\rho v)^{.5} = 0.189 \text{ m/s}$$
 Base

So. Top Uf =
$$Kv * ((\rho l - \rho v)/\rho v)^5 = 0.209 \text{ m/s}$$
 Top

Base Uv = Uf * .85 =
$$0.160 \text{ m/s}$$

Top Uv = Uf * .85 = 0.178 m/s

TRAY DESIGN OF ABSORBER

COLLECTIVE DATA FROM ABSORBER COLUMN:		
Diameter of column:	1.5	m·
Liquid mass velosity:		kg/s
Liquid density:		kg/m ³
Liquid viscosity:	0.036	-
K, Equilibrium constant for solute:	0.030	1 a-5
Liquid molecular wt. :	57.37	
Vapour density:		kg/m³
max.vapour velocity at 85% flooding:	0.178	
max. vapour rate:		m^3/s
orifice coefficient Co:	0.84	111 7 0
Plate spacing:	18	In
Flv:	0.360	
Ls, Liquid molar flow:		Kg.moles/s
Gs, Gas molar flow:		Kg.moles/s
yn, fraction of H ₂ S:	0.000004	TOP
xn, Fraction of H ₂ S:	0	
L1, Liquid molar flow:	0.401	Kg.moles/s
G1, Gas molar flow:	0.830	Kg.moles/s
y1, fraction of H ₂ S:	0.09	BOTTOM
x1, Fraction of H ₂ S:	0.185	
Continued Calculations :		
Column Area -	1.766	m²
Downcomer area = 12% of column area =	0.211	m^2
Net area = $Ac - Ad =$	1.55	m ²
Active area = $Ac - 2Ad =$	1.34	m^2
Hole area = 10% active area =	0.134	m^2
Hole diameter, hd =	5	mm
Plate thickness		
=	5	mm
wier length, lw = .6 to .85 times Dia of column =	1 1 1	
Wier height, hw	1.14	m
=	50	mm
		

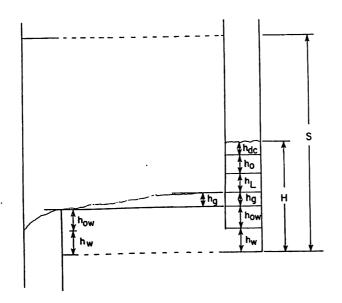


Fig 9 : Single Tray [2]

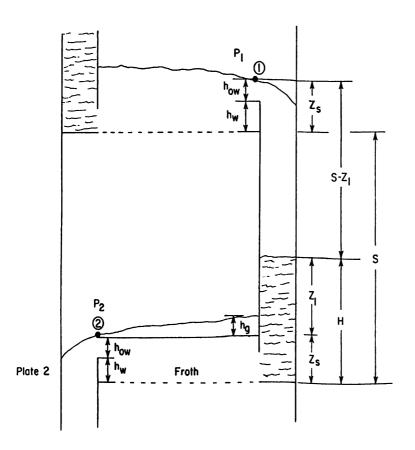


Fig 10 : Sieve Tray arrangement [2]

CHECK WEEPING [2]

Max, Weir crest, how =
$$750*(Lw/(\rho l*lw))^{2/3} = 45.25$$
 mm

Min, Weir crest, how =
$$750*(Lw/(\rho l*lw))^{2/3} = 35.67$$
 mm

So, at min. rate
$$(hw + how) = 85.67$$
 mm

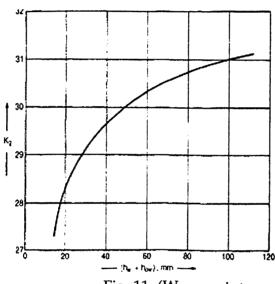


Fig:11 (Weep point correlation)

Vhole (min) =
$$(K2 - .9*(25.4-dh))/\rho^2$$
 = 0.0031 m/s

$$= 1.435 \text{ m/s}$$

31

PLATE PRESSURE DROP [2]

Minimum vapour velocity through holes,

Vhmax = 2.050 m/s

Plate thickness / hole diameter = 1

So, Ah / Ap = Ah / Aa =

Dry plate drop

mm liquid

 $hd = 51* ((Vhmax / Co)^2)*(\rho v / \rho l) = 17.441 column$

Residual head

 $hr = 12.5* 1000 / \rho l =$ 11.25 mm liq.

Total plate pressure drop

Ht = hd + hr + hw + how = 123.95 mm liquid

DOWNCOMER LIQUID BACKUP [2]

hap = hw - 10 or 5 = 40 mm

Area under apron Aap = hap * $lw = 0.045 m^2$ As this is less than Ad = 0.21 m^2

So, Ad > Aap

 $Hd = 166* (Lwd/(\rho l * Aap))^2 = 22.791 mm$

Downcomer backup measured from plate surface, mm

Hb = hw + how + Hd + Ht

= 241.99 mm

As, Hb < 1/2 * (plate spacing + weir length) = 798.6 mm

So, the diameter and tray spacing -- both are satisfactory

FROTH DENSITY & HEIGHT [2]

Froth density - 0.4 to 0.7 times of clear liquid

and the second s		
=	555.4	kg/m³
Calculation for froth height		
Diameter of column :	1.5	m
Liquid mass velosity:	18.768	kg/s
Froth density:	555.4	kg/m³
Liquid viscosity:	0.036	Pa-s
K, Equilibrium constant for solute:	0.228	
Liquid molecular wt. :	57.37	
Vapour density:	63.744	kg/m³
max.vapour velocity at 85% flooding:	0.178	m/s
max. vapour rate:	0.275	m^3/s
orifice coefficient Co:	0.84	
Plate spacing:	18	in
Flv:	0.360	
Ls, Liquid molar flow:	0.327	Kg.moles/s
Gs, Gas molar flow:	0.755	Kg.moles/s
yn, fraction of H ₂ S:	0.000004	TOP
xn, Fraction of H ₂ S:	0	
L1, Liquid molar flow:	0.401	Kg.moles/s
G1, Gas molar flow:	0.830	Kg.moles/s
y1, fraction of H ₂ S:	0.09	BOTTOM
x1, Fraction of H ₂ S:	0.185	

Calculations for froth height:

Column Area -	1.76	m^2
Downcomer area = 12% of column area =	0.21	m^2
Net area = $Ac - Ad =$	1.55	m^2
Active area = $Ac - 2Ad =$	1.34	m^2
Hole area = 10% active area =	0.134	m^2
Hole diameter, hd =	5	mm
Plate thickness =	5	mm
wier length, $lw = .6$ to .85 times Dia of		
column =	1.14	m
Wier height, hw =	50	mm

CHECK WEEPING (with froth consideration) [2]

Max. liquid rate	=	18.768 kg/s
Max, Weir crest, how	=	
750*(Lw/(ρl*lw))^(2/3)	=	71.836 mm
Max. turndown at 70 % liq. Rate	=	13.138 kg/s
Min, Weir crest, how	=	
750*(Lw/(ρl*lw))^(2/3)	= '.	56.633 mm

So, at min. rate (hw + how) =

106.633 mm

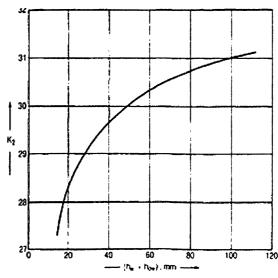


Fig 12: Weep point correlation

31

Vhole (min) =
$$(K2 - .9*(25.4-dh))/\rho^2$$
 = 0.0031 m/s

Actual minimum hap velocity, Vhmin

PLATE PRESSURE DROP (with froth consideration) [2]

Minimum vapour velocity through

holes, Vhmax = $2.050 \, \text{m/s}$

Plate thickness / hole diameter = 1 1

So, Ah / Ap = Ah / Aa =

Dry plate drop

 $hd = 51* ((Vhmax / Co)^2)*(\rho v / Co)^2)*(\rho v / Co)^3$

 $\rho l) =$ 34.88 mm liquid column

Residual head

 $hr = 12.5* 1000 / \rho l =$ 22.506 mm liq.

Total plate pressure drop

Ht = hd + hr + hw + how

179.22 mm liquid

DOWNCOMER LIQUID BACKUP (for froth consideration) [2]

hap = hw - 10 or 5 =40 mm

Area under apron Aap =

hap * lw = 0.045 m^2

As this is less than Ad =0.211 m²

So, Ad > Aap

 $Hd = 166* (Lwd/(\rho l)*)$

 $Aap))^2 =$ 91.166 mm

Downcomer backup measured from plate surface, mm

Hb = hw + how + Hd +

Ht =392.228 mm

As, Hb <1/2 * (plate spacing + weir length) =

798.6 mm

So, the diameter and tray spacing -- both are satisfactory Residence time

 $tr = Ad * Hb * \rho l / Lwd = 3.03556905 s$

Entrainment Check [2]

Uv = (max.vap.rate) Vhmax/ Net area =	0.177	m/s
%age flooding = So, at at Flv = we get from graph ψ, Fractional entrainment =	85 0.360 0.004	< 0.1
ψ, Fractional entrainment =	0.004	< 0.1

(below this value

the effect on efficiency

will be small)

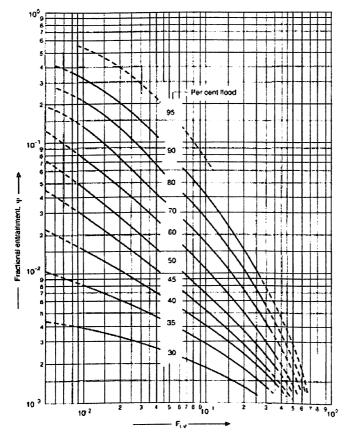


Fig: 13 (Fractional Entrainment factor)

Tray Efficiency [2]

$$x = .062 * \rho s / (\mu s * K * Ms) = 142.368$$

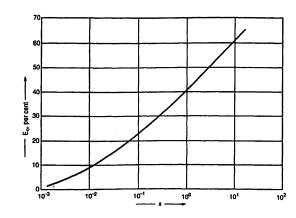


Fig: 14 (Efficiency of tray)

From Graph we get

Ea, efficiency of plate =

70 %

Number of Trays calculation [2]

A, Absorption factor = L/(K*G)

A1, bottom absorption factor = L1 / (K* G1) = 2.119

A2, top absorption factor = $Ls / (K^* Gs)$

avg.
$$A = (A1 * A2)^{(.5)}$$

= 2.004

13.414

Number of theoretical plates = $\log (((y1 - K*xn) / (yn - K*xn))*(1-1/A) + 1/A) / \log A$

Number of real trays = Theoretical trays / efficiency

Height of column

Height of trays = (Total number of trays - 1) * Tray spacing

27.246 ft

Height of top & bottom empty spaces

8 ft

Total height of column

35.246 ft

LOAD BASED SHELL THICKNESS CALCULATION FOR ABSORBER [2]

INPUT DATA:	
Shell Material -	SA- 283 Grade C
	Double welded
Type of shell Plate Joint -	butt joint with
	10%

	Radiography.	
Skirt Height -	4	m
Weight of Liquid and Tray -	120	kg/m²
Weight of Attachment -	150	kg/m
(pipes, ladders & platform)		
Wind Pressure (Pw) -	130	kgf/cm ²
Insulation Thickness t _{ins} -	100	mm
Density of Insulation ρins -	500	kg/m³
Maximum allowable stress of shell plate		_
material at design Temperature, F -	890	kgf/cm ²
Modulus of Elasticity 'E' -	2000000	kgf/cm ²
Poison's Ratio μ -	0.3	
Corrosion Allowance (C.A) -	2	mm
Spgr of material grade choosen -	7.865	
Multiplicative to max allowable stress		
for, J	0.85	

Design:

9	From Column	dsign	calculation	we have
---	-------------	-------	-------------	---------

Shell O.D at top -	1500	mm
Shell Length Tangent Line to Tangent Line -	10.743	m
Internal Design Pressure -	66.189	kgf/cm ²
Design Temperature -	43	°C
Tray Spacing -	0.457	m
Top Disengaging Space -	1.219	m

For internal design pressure

Internal design pressure =	66.189	kgf/cm ²
O.D of shell at top Do =	1500	mm

$$ts = (P * Ro / (F * J + .4* P)) + C.A =$$
 65.402 mm

So plate thickness to be used for the fabrication of shell is

Inside diameter at top Di = Do - C.A * ts = 1367.195 mm

Design of top head (Type of head: Torispherical)

For head subjected to internal pressure

Rc = Di =	1367.195	mm
Rk = .1*Rc =	136.719	mm
$W = .25 * (3 + (Rc / Rk)^{5}) =$	1.540	
th' = (P * Rc * W / (2* F * J2 * P)) + C.A	94.956	mm
th = 1.06 * th' =	100 654	mm

So plate thickness used to fabricate top head is

102 mm

66 mm

Blank diameter =
$$OD + OD/42 + 2SF +$$
 for th $2/3 iCr + th$ $<>1$ "

O.D of head =
$$Rc + 2 * th = 1570.503 \text{ mm}$$

$$S.F = 1.5$$
" = 38.1 mm

Let X be the distance from the top of up to which we can use calculated thick shell.

(A) Circumferential stress induced in shell plate material at a distance X from the top of shell

(due to internal presssure)

$$Fcp = P * Di / (2* ts - C.A) =$$

702.5729993 kgf/cm² is tensile in nature

756.5 kgf/cm²

as Fcp < Ftmax

Fcp will remain same for entire length

(B) Various axial stresses induced in the shell plate material at distance X from the top of the shell.

(i) Axial stress induced due to internal pressure, Fap = P * Di / (4*(ts-C.A)) =

351.286 kgf/cm²

(ii) Axial stress induced due to dead weights Fdx = Fdsx + Fdinsx + Fd(ligt + tray)x + Fdattx

Where, Fdsx = stress induced due to weight of shell

$$Fdsx = \rho s * X =$$

0.786 *X kgf/cm²

Axial stress due to dead load of insulation, **Fdinsx**

$$Dm = (Do + Di)/2 =$$
 1433.597 mm
 $Dins = Do + tins =$ 1600 mm

Dins = Do + tins =

(Mean diameter of

insulation shell)

Fdinsx = 3.14*Dins*tins*pins*X/(3.14*Dm*(ts - C.A)) =

0.0866 * X kgf/cm²

Axial stress induced due to dead load of (liq + trays) up to distance X

from top, Fd(liq + tray)x

Top disengaging space, h = 1.2192

Tray spacing, S = 0.4572

 $F(\text{liq} + \text{tray})x = \text{no. of trays up to } X^* \text{ (wt. of one tray + wt. of liq. On the same tray)}$

F(liq + tray)x = ((X-h)/S + 1) * wt. = 385.128 * (X -0.762) kgf/m²

Fd(liq + tray)x = F(liq + tray)x / (3.14*Dm*(ts-C.A) 0.132 * (X-0.762) kgf/cm²

Fd(att)x = (wt. of top head + wt. of pipe, ladder, platform etc.) / (3.14* Dm * (ts - C.A))

 $Fd(att)x = 0.76263547 + X * 0.0517409 \text{ kgf/cm}^2$

Fdx = 0.7865 * X + 0.086 * X + 0.132 * X0.661406747 + X * 0.051740901

Implies -----

Fdx = 1.0577 * X + 0.661406747

(iii) Axial stress due to wind load at a distance X from the top of the shell, Fwx

Fwx =
$$(1.4 * Pw * X^2)/(3.14 * Do * (ts - C.A))$$
 = 599.998 * $X^2 kgf/m^2$ = 0.0599 * $X^2 kgf/cm^2$

Maximum ensile stress induced in the shell plate material at a distance X from the top of the shell.

Ftmax = Fap - Fdx + Fwx =
$$0.059 * X^2 - 1.057 * X + -0.66 + 351.28$$

= $0.0599 * X^2 - 1.057 * X + -0.66 + 351.28$
* $X + 350.625$
= 756.5

So the equation becomes ----- 0.0599 * X^2 -1.057 * X -405.874 =0

So, X = 91.532 or -0.266

So, X = 91.53264202 m

Maximum compressive stress induced in the shell plate at a distance X from the top of the shell:

Fcmax = Fwx + Fdx - Fap = $0.059^* X^2 + 1.057^* X$ -350.62

Fcallow = $(1/12) * (E/(3*(1-\mu^2))^5) * ((ts - C.A) * 2/Do)$ = $8661.765968 \text{ kgf/cm}^2$

So, Fcmax = $7362.501073 \text{ kgf/cm}^2$

So, equation becomes ----- 0.0599 * X^2 + 1.057* X -7713.12

= 0So, X = 349.835914 or -367.4648859

So, X = 349.835914 m

As the lower one to be considered, therefor up to 349.835914 m

Result: - Absorber shell thickness to be used is 66.402137 mm

11.3 FLASH DRUM [2]

INPUT DATA		_
Inlet Temperature		
:	174.2	o F
Outlet Pressure:	80.85	psia
Outlet Temperature:	122	٥F
		moles H ₂ S / moles
New K at outlet pressure:	0.1	Solvent
Vessel Full %age :	50	%
Residence time:	1	min

(at reduced pressure)

(Assumption: In vapour phase only H₂S present)

Calculation:

Rich Sulfinol calculated data

Inlet Flow rate: 0.4018109

0.4018109 Kg.moles/s

Inlet Composition

:

Sulfolane:	0.154	mol. Frac	7.507	Kg/s
DIPA:	0.140	mol. Frac	7.507	Kg/s
Water:	0.519	mol. Frac	3.753	Kg/s
H_2S :	0.185	mol. Frac	7.659	Kg/s
			26.428	Kg/s

Density of rich sulfinol --- 818.586 kg/m³ Inlet Pressure : 972.99 psia

F, Feed = L, Liquid rate + V, vapor rate i.e L + V = 0.401

Whereas vapor phase will be according to the reduction in solubility of H_2S in sulfinol due to pressure reduction

So,
$$V = Inlet rich sulfinol - (pure sulfinol * (1 + new K))$$

$$V = Sulfinol releasing = 0.0419 Kg.moles/s$$

So, L =
$$0.359$$
 Kg.moles/s = 0.018 m³/s

So, new composition of the outlet rich sulfinol:

		Kg.moles/s	mole. Frac	kg/s	wt. frac
Outlet	Sulfolane:	0.062	0.172	7.50	0.37
Composition	DIPA:	0.056	0.156	7.50	0.37
-	Water:	0.208	0.579	3.75	0.18
	H_2S :	0.032	0.090	1.11	0.05
	Total, moles/s:	0.359		19.8	

Consider Length of vessel = 3 * Diameter

Diameter =
$$2.23 \text{ m}^3$$

& Length =
$$2.94$$
 m

11.4 HEAT EXCHANGER DESIGN

THE DESIGN STEPS OF HEAT EXCHANGER:

- 1. Process conditions (stream compositions, flow rates, temperatures, pressures) must be specified.
- 2. Required physical properties over the temperature and pressure ranges of interest must be obtained.
- 3. The type of heat exchanger to be employed is chosen.
- 4. A preliminary estimate of the size of the exchanger is made, using a heat-transfer coefficient appropriate to the fluids, the process, and the equipment.
- 5. A first design is chosen, complete in all details necessary to carry out the design calculations.
- 6. The design chosen in step 5 is evaluated, or rated, as to its ability to meet the process specifications with respect to both heat transfer and pressure drop.
- 7. On the basis of the result of step 6, a new configuration is chosen if necessary and step 6 is repeated. If the first design was inadequate to meet the required heat load, it is usually necessary to increase the size of the exchanger while still remaining within specified or feasible limits of pressure drop, tube length, shell diameter, etc. This will sometimes mean going to multiple-exchanger configurations. If the first design more than meets heat-load requirements or does not use all the allowable pressure drop, a less expensive exchanger can usually be designed to fulfill process requirements.
- 8. The final design should meet process requirements (within reasonable expectations of error) at lowest cost. The lowest cost should include operation and maintenance costs and credit for ability to meet long-term process changes, as well as installed (capital) cost. Exchangers should not be selected entirely on a lowest-first-cost basis, which frequently results in future penalties.

ASSUMPTIONS:

1. All elements of a given fluid stream have the same thermal history in passing through the exchanger.

- 2. The exchanger operates at steady state.
- 3. The specific heat is constant for each stream.
- 4. The overall heat-transfer coefficient is constant.
- 5. Heat losses are negligible.

Lean Sulfinol	T1 Hot fluid hot temperature	=	269.6	٥F	132	2 °C
from striper	T2 Hot fluid cold temperature	=	200	٥F	93.33	3 °C
Rich Sulfinol from flash	t1 Cold fluid cold temperature	=	122	٥F	50) ∘C
drum	t2 Cold fluid hot temperature	=	190.356	٥F	87.97	7 °C

Thermal conductivity cold fluid = 0.53 kcal/hr m C Thermal conductivity hot fluid = 0.5 kcal/hr m C

TUBE DETAILS

BWG 16

OD outside diameter	=	0.75	in
ID inside diameter	=	0.62	in
L Length	=	16	ft
Triangular			
Pitch	=	1	
K1	=	0.319	•
N1	=	2.142	

Calculations

viscosity(cold fluid) at 68.9878 viscosity(hot fluid) at 112.667		0.0021 0.0026	poise poise	_		·	
mk1 mass flow rate hot fluid mk2 mass flow rate cold fluid	=	0.327 0.359	Kg.moles/s	67567.4 71571.2	•	Lean Sulfinol Rich Sulfinol	
ρk1 Density of hot fluid	=	1.11	g/cc	1110.8	kg/m³		
ρk2 Density of cold fluid	=	0.650	g/cc	650.86	kg/m³		
ck1 Hot fluid specific heat ck2 cold fluid specific heat	=		kcal/kg C kcal/kg C			Lean Sulfinol Rich Sulfinol	
Heat Duty Calculation							
Temperature ratio, (T1 - T2) / (t	:2 - t1) =	1.0182					
Cold fluid heat absorption mk2 * ck2 * (t2 - t1)	=	1125881	kcal/hr				
Hot Fluid heat removal mk1 * ck1 * (T1 - T2)	=	1125883	kcal/hr				
mk2 mass flow rate cold fluid	=	71571 2	ko/hr				

1st assumption of U =
$$1500 \text{ kcal/hr m}^2 \, ^{\circ}\text{C}$$

A, area required for H.T =
$$17.184 \text{ m}^2$$

With 3/4 " O.D & 16 ft long tube

Nt = At/(3.14 * O.D * L) = 58.908 tubes no. of tubes

Db, Tube bundle Dia = 217.754 mm

Calculation of hi, inside heat transfer coefficient

$$at = (Nt/Np)^*(\P/4)^*di^2 = 0.0114 m^2$$

$$Gt = m/at = 1733.55 \text{ kg/m}^2 \text{ s}$$

ut, velocity of tube side fluid = 2.663 m/s

Re, = 12938.3 Pr, = 5.866

hi, = $2735.57 \text{ kcal/hr m}^2 \text{ C}$ ho, = $2261.41 \text{ kcal/hr m}^2 \text{ C}$

H2O percent wt. [14] Equipment 25 Btu / hr.ft2.ºF 20 10 Lean/Rich 70 102 119 exchanger Solvent Coolers 85 37 94 Reboilers 131 107 207

11.5 COOLER DESIGN

Lean Sulfinol from T1 Hot fluid hot temperature 200 °F 93.3333 ∘C heat exchanger R/L T2 Hot fluid cold temperature 119.3 ∘F 48.5 °C

Required temperature of Lean Solvent for Absorption. Typically 5.5°C above inlet gas temperature

Utility used t1 Cold fluid cold temperature 68 ٥F ٥C 20 is RT water t2 Cold fluid hot temperature 104 °F 40 °C

(water) Thermal conductivity cold fluid 0.54 kcal/hr m C (Lean Sulfinol) Thermal conductivity hot fluid 0.5 kcal/hr m C = (water) ck1 cold fluid specific heat 1.4 kcal/kg C viscosity(cold fluid) at (water) 30 0.0006 poise

(water) ρk1 Density of cold fluid 1 g/cc 1000 kg/m^3

TUBE DETAILS

BWG 16

OD outside diameter 0.75 in ID inside diameter 0.62 in L Length 16 ft Triangular Pitch 1 K1 0.319 N1 2.142

Calculations

viscosity(hot fluid) at 70.91666667 = 0.00269 poise

ck2 hot fluid specific heat = 0.43094 kcal/kg C Lean Sulfinol mk2 mass flow rate hot fluid = 0.35982 moles/s 74324.1 kg/hr Lean Sulfinol

 ρ k2 Density of hot fluid = 1.1108 g/cc 1110.8 kg/m³

Heat Duty Calculation

Temperature ratio, (T1 - T2) / (t2 - t1) = 2.24167

Cold fluid heat absorption = 1435986 kcal/hr

mk1 * ck1 * (t2 - t1)

Hot Fluid heat removal = 1435986 kcal/hr

mk2 * ck2 * (T1 - T2)

mk2 mass flow rate cold fluid = 51285.2 kg/hr

LMTD calculation = 39.6282 °C

1st assumption of U = 1500 kcal/hr m² °C

A, area required for H.T $= 24.1576 \text{ m}^2$

With 3/4 " O.D & 16 ft long tube

Nt = At/(3.14 * O.D * L) = 82.8122 tubes no. of tubes

Db, Tube bundle Dia = 255.282 mm

Calculation of hi, inside heat transfer coefficient

 $at = (Nt/Np)*(\P/4)*di^2 = 0.016 m^2$

 $Gt = m/at = 883.639 \text{ kg/m}^2 \text{ s}$

ut, velocity of tube side fluid = 0.88 m/s

Re, = 23192.6

Pr, = 1.72

hi, = $2932.33 \text{ kcal/hr m}^2 \text{ C}$

ho, = $2424.06 \text{ kcal/hr m}^2 \text{ C}$

11.6 STRIPPING COLUMN DESIGN

y2, Outlet Sulfinol purity possible, wrt.H ₂ S =	100	%
Steam available at:	120	٥C
Steam, H ₂ S absorbility from table: moles H ₂ S / moles		
steam	0.1	
Steam density, ρ:	2.7	kg/m3
Steam molecular wt.:	18	
Design Pressure:	5	kgf/cm ²

Sulfinol Properties-----

		DIPA =	133.2	
	Molecular wt.	Sulfolane =	120.7	
		Water =	18	
		$H_2S =$	34	
		DIPA =	989	kg/m³
	Density	Sulfolane =	1288	kg/m³
Rich		Water =	1000	kg/m³
Sulfinol		$H_2S =$	6	kg/m³
		DIPA =	198	cp
	Viscosity	Sulfolane =	6.1	cp
		Water =	1	cp
		$H_2S =$	0.3	cp
		DIPA =	0.69	Btu/lb
	Specific heat	Sulfolane =	0.35	Btu/lb
		Water =	1.801	Btu/lb
		$H_2S =$	0.238	Btu/lb

Calculation:

Solvent Properties

			by wt.	
	DIPA =		37.76	%
	Sulfolane =		37.76	%
	Water =		18.88	%
	$H_2S =$	•	5.594	%
			mol.	
			Fraction	Kg.moles/s
	DIPA =		0.157	0.05637
	Sulfolane =		0.173	0.0622
	Water =		0.58	0.20854
	$H_2S =$		0.091	0.03271
Avg	Viscosity of sulfinol	=	33.74	ср
Avg	Specific heat	=	0.414	kcal/kg ºC
Avg	Molecular wt. of sulfinol	l=	55.25	, 8 -
Avg	Density of sulfinol	=	1049	kg/m³
Avg	Viscosity of sulfinol	=	3.958	ср

TOPRich Solvent (Sulfinol) feed, Ls =			19.88	kg/s
		=	0.36	Kg.moles/s
		=	0.019	m^3/s
	$\rho l =$		1049	kg/m³
xs =			0.091	
BOTTOMLean Solvent (Sulfinol) out,	L1 = Ls -			
$H_2S =$			0.327	Kg.moles/s
		=	18.77	kg/s
		=	0.017	m^3/s
	$\rho l =$		1111	kg/m ³
	x1 =		1E-07	
So, H_2S to be absorbed =			0.033	Kg.moles H_2S / s
BOTTOMG1, Steam flow rate required	d		3.124	Kg.moles/s

$$= 56.23 \text{ kg/s}$$

$$= 20.83 \text{ m}^3/\text{s}$$

$$\rho v = 2.7 \text{ kg/m}^3$$

$$y1 = 0$$

$$= 3.157 \text{ Kg.moles/s}$$

$$= 56.82 \text{ kg/s}$$

$$= 20.78 \text{ m}^3/\text{s}$$

$$\rho v = 20.78 \text{ m}^3/\text{s}$$

$$\rho v = 2.734 \text{ kg/m}^3$$

$$as, ys (H_2S) = 0.010 \text{ mole } H_2S \text{ / mole gas}$$

$$= 1.734 \text{ kg/m}^3$$

$$= 2.734 \text{ kg/m}^3$$

$$= 3.734 \text{ k$$

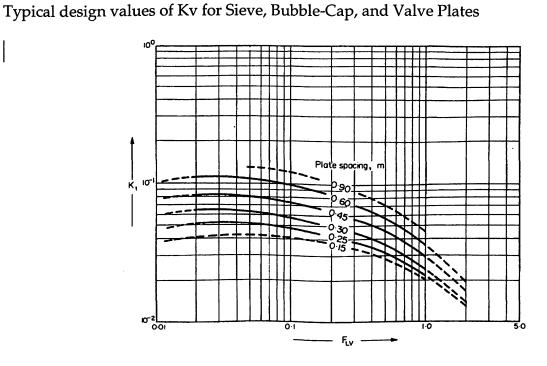


Fig 15: Flooding velocity, sieve plates

Kv, from table = for tray spacing =		0.1 30	in	
So. Base Uf = $Kv * ((\rho l - \rho v)/\rho v)^5 =$		2.026	m/s	Base
So. Top Uf = $Kv * ((\rho l - \rho v)/\rho v)^5 =$		1.956	m/s	Тор
Design for flooding at maximum flow rate of Base Uv = Uf * .85 = Top Uv = Uf * .85 =		1.722 1.663	•	%
Area	Top, Base,		m^2 m^2	
Diameter	Top, Base,	3.99 3.925	m m	
Use column diameter =		4	m	

COLLECTIVE DATA FROM STRIPPER COLUMN

Diameter of column:	4	m	
Liquid mass velocity:	19.880	kg/s	
Liquid density :	1049	kg/m³	
Liquid viscosity:	0.033	Pa-s	
Liquid molecular wt.:	55.252		
Vapor density:	2.73	kg/m³	
max.vapor velocity at 85% flooding:	1.721	m/s	
max. vapor rate :	20.78	m^3/s	
orifice coefficient Co:	0.84		
Plate spacing :	30	in	
Flv:	0.0058		
Ls, Liquid molar flow:	0.359	Kg.moles/s	
Gs, Gas molar flow:	3.156	Kg.moles/s	TOP
yn, fraction of H₂S:	0.010		
xn, Fraction of H ₂ S:	0.090		
L1, Liquid molar flow:	0.327	Kg.moles/s	
G1, Gas molar flow:	3.123	Kg.moles/s	Bottom
y1, fraction of H ₂ S:	0		
$x1$, Fraction of H_2S :	0.01		

Tray Efficiency [2]

 $x = .062 * \rho s / (\mu s * K * Ms) =$

70 60 50 40 10 10

Fig 16 (Efficiency of tray)

From Graph we get

Ea, efficiency of plate =

70 %

34.885

Number of Trays calculation [2]

S, Stripping factor = L/(K*G)

S1, bottom stripping factor =
$$(K^* G1) / L1$$
 = 0.955

S2, bottom stripping factor =
$$(K^* Gs) / Ls$$
 = 0.877

avg.
$$S = (S1 * S2)^{(.5)}$$
 = 0.915

Number of theoretical plates = $\log (((xn - y1/K) / (x1 - y1/K))*(1-1/S) + 1/S) / \log S$

Number of real trays = Theoretical trays / efficiency

Height of column

Height of trays = (Total number of trays - 1) * Tray spacing

= 53.225 ft

Height of top & bottom empty spaces

8 ft

Total height of column

= 61.225 ft

SHELL THICKNESS CALCULATION OF STRIPPER [2]

INPUT DATA:

Shell Material -	SA- 283 Grade C	
	Double welded butt	
Type of shell Plate Joint -	joint with 10%	
	Radiography.	
Skirt Height -	4	m
Weight of Liquid and Tray -	120	kg/m²
Weight of Attachment -	150	kg/m

Maximum allowable stress of shell

plate

material at design Temperature, F - 890 kgf/cm 2 Modulus of Elasticity 'E' - 2000000 kgf/cm 2 Poison's Ratio μ - 0.3 Corrosion Allowance (C.A) - 2 mm

Spgr of material grade choosen - 7.865

Multiplicative to max allowable

stress for, J 0.85

Design:

From Column dsign calculation we

have

Shell O.D at top - 4000 mm

Shell Length Tangent Line to Tangent

Line - 18.66143603 m

Internal Design Pressure - 5 kgf/cm²

Design Temperature - 120 $^{\circ}$ C Tray Spacing - 0.762 m Top Disengaging Space - 1.2192 m

For internal design pressure

$$ts = (P * Ro / (F * J + .4* P)) + C.A =$$
 15.183 mm

So plate thickness to be used for the fabrication of shell is

16 mm

25 mm

Inside diameter at top Di = Do - C.A * ts = 3967.632 mm

Design of top head (Type of head: Torispherical)

For head subjected to internal pressure

$$Rc = Di =$$
 3967.632 mm
 $Rk = .1*Rc =$ 396.763 mm
 $W = .25*(3 + (Rc / Rk)^{.5}) =$ 1.540
 $th' = (P*Rc*W / (2*F*J-.2*P)) + C.A$ 22.21 mm
 $th = 1.06*th' =$ 23.545 mm

So plate thickness used to fabricate top head is

Blank diameter =
$$OD + OD/42 + 2SF + 2/3 iCr + th$$
 for th <>1"
O.D of head = $Rc + 2 * th =$ 4016.72 mm

$$S.F = 1.5$$
" = 38.1 mm

Let X be the distance from the top of up to which we can use calculated thick shell.

(A) Circumferential stress induced in shell plate material at a distance X from the top of shell

(due to internal presssure)

$$Fcp = P * Di / (2* ts - C.A) =$$

699.318 kgf/cm² is tensile in nature

756.5 kgf/cm²

as Fcp < Ftmax

Fcp will remain same for entire length

(B) Various axial stresses induced in the shell plate material at distance X from the top of the shell.

349.659 kgf/cm²

(ii) Axial stress induced due to dead weights
Fdx = Fdsx +Fdinsx +Fd(ligt + tray)x +Fdattx

Where, Fdsx = stress induced due to weight of shell

$$Fdsx = \rho s * X =$$

0.786 *X kgf/cm²

Axial stress due to dead load of insulation, Fdinsx

$$Dm = (Do + Di)/2 =$$

3983.816 mm

$$Dins = Do + tins =$$

4100 mm (Mean diameter of

Fdinsx =

insulation shell)

$$3.14*Dins*tins*pins*X/(3.14*Dm*(ts - C.A)) =$$

0.362 * X kgf/cm²

Axial stress induced due to dead load of (liq + trays) up to distance X from top, Fd(liq + tray)x

Top disengaging space, h =

1.21

Tray spacing, S =

0.762

 $F(\text{liq} + \text{tray})x = \text{no. of trays up to } X^* \text{ (wt. of one tray + wt. of liq. On the same tray)}$

F(liq + tray)x = ((X-h)/S + 1) * wt. =

1946.071 * (X - 0.457) kg

 $) kgf/m^2$

Fd(liq + tray)x = F(liq + tray)x / (

3.14*Dm*(ts-C.A) =

1.096 * (X-0.457

) kgf/cm^2

Fd(att)x = (wt. of top head + wt. of pipe, ladder, platform etc.) / (3.14* Dm * (ts - C.A))

$$Fd(att)x = 1.712433336 + X * 0.084 kgf/cm2$$

Implies -----

$$Fdx = 2.33*X + 1.21$$

(iii) Axial stress due to wind load at a distance X from the top of the shell, Fwx

Fwx =
$$(1.4 * Pw * X^2)/(3.14 * Do * (ts - C.A))$$
 = $1021.61 * X^2 kgf/m^2$ = $0.102 * X^2 kgf/cm^2$

Maximum ensile stress induced in the shell plate material at a distance X from the top of the shell.

Ftmax = Fap - Fdx + Fwx =
$$0.102 * X^2 - 2.33 * X + 1.21 + 349.659$$

= $0.102 * X^2 - 2.33 * X + 348.448$

= 756.5

So the equation becomes ------

So, $X = 75.627$ or -0.55121

So, $X = 75.627$ m

Maximum compressive stress induced in the shell plate at a distance X from the top of the shell .

Fcmax = Fwx + Fdx - Fap =
$$0.102 * X^2 + 2.33 * X$$

-348.448

Fcallow =
$$(1/12) * (E/(3*(1-\mu^2))^5) * ((ts - C.A) * 2/Do)$$

= 715.374 kgf/cm^2
So, Fcmax = 608.068 kgf/cm^2
 $0.102 * X^2 + 2.33 * X$

So, equation becomes -----

	-956.516	=	0
So, $X =$	86.024	or	-108.838
So, $X =$	86.024	m	

As the lower one to be considered, therefor up to 86.024 m

Result: Shell thickness to be used -- 16 mm

12. MATERIAL BALANCE

INPUT TO ABSORBER

Gas			Sulfinol	% by	mol.	
Composition	mol frac	Kg.moles/s	composition	wt.	Fraction	Kg.moles/s
C_1	0.735	0.61	DIPA =	40	0.172	0.056
C_2	0.083	0.068	Sulfolane =	40	0.19	0.062
C_3	0.021	0.017	Water =	20	0.637	0.208
<i>i-C</i> ₄	0.006	0.004	$H_2S =$	0	0	0
n - C_4	0.002	0.001	Total			0.327
i - C_5	0.003	0.002				
n - C_5	0.008	0.006				
C_6	0.001	0.0008				
C ₇₊	0.001	0.0008				
N_2	0.05	0.041				
CO_2	0	0				
H_2S	0.09	0.074				
Total		0.830				

OUTPUT FROM ABSORBER

Gas Composition	mol frac	Kg.moles/s	Sulfinol	mol.	V1 /
-		•	composition	Fraction	Kg.moles/s
C_1	0.807	0.610	DIPA =	0.140	0.056
C_2	0.091	0.068	Sulfolane =	0.154	0.062
C_3	0.023	0.017	Water =	0.519	0.208
i-C ₄	0.006	0.004	$H_2S =$	0.185	0.074
n-C ₄	0.002	0.001	Total		0.401
<i>i-C</i> ₅	0.003	0.002			
n - C_5	0.008	0.006			
C_6	0.001	0.0008			
C ₇₊	0.001	0.0008			
N_2	0.054	0.041			
CO_2	0	0			
H_2S	4.3956E-06	3.3E-06			
Total		0.75537			

OUTPUT FROM FLASH DRUM (INPUT TO & OUTPUT FROM HEAT EXCHANGER)

Sulfinol composition	mol. Fraction	Kg.moles/s		Kg.moles/s
DIPA =	0.156	0.056	Vapor H₂S	0.042
Sulfolane =	0.172	0.06	_	
Water =	0.579	0.208		
$H_2S =$	0.090	0.032		
Total	e .	0.359		

OUTPUT FROM STRIPPER

Sulfinol output - 0.327	7 Kg.moles/s
-------------------------	--------------

Sulfinol		
composition	mol. Fraction	Kg.moles/s
DIPA =	0.172	0.056
Sulfolane =	0.190	0.062
Water =	0.637	0.208
$H_2S = $	0	0
Total		0.327

13. LEAN SULFINOL TRANSPORT PUMP CALCULATIONS

Pumps can be classified into two general types:

- 1. Dynamic pumps, such as centrifugal pumps.
- 2. Positive displacement pumps, such as reciprocating and diaphragm pumps.

The single-stage, horizontal, overhung, centrifugal pump is by far the most commonly used type in the chemical process industry. Other types are used where a high head or other special process considerations are specified. Pump selection is made on the flow rate and head required, together with other process considerations, such as corrosion or the presence of solids in the fluid. Kern (1975) discusses the practical design of pump suction piping, in a series of articles on the practical aspects of piping system design published in the journal Chemical Engineering from December 1973 through to November 1975.

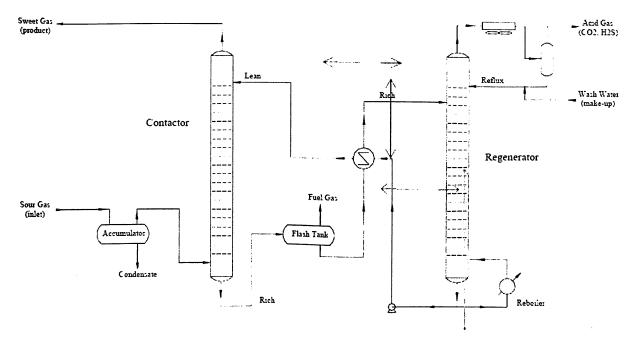


Fig 17: Process flow sheet

INPUT DATA:		
Piping length to suction		
:	2	m
Suction static head:	1.5	m
Bends in suction line:	1	
valves in suction line:	1	
Piping length from discharge:	44.5	m
Bends in discharge line		
:	6	
Valves in discharge line		
:	3	
Vapor pressure of solvent:	0.1	Кра
Control valve pressure drop:	140	Кра
Orifice pressure drop:	15	Кра
Heat exchanger pressure drop:	70	Кра

Pipe diameter required:

Lean Sulfinol Density =	1110.8	kg/m³
Viscosity =	36.916	Ср
Mass flow rate =	18.768	kg/s
Volumetric flow rate =	0.016	m^3/s
Typical liquid velocity		
=	2.5	m/s

From table.

<u></u>	Velocity m/s	ΔP Kpa/m
Liquids, pumped (not viscous)	1 to 3	0.5
Liquids, gravity flow	-	0.05
Gases and vapors	15 - 30	0.02% of
		line pressure
High-pressure steam, >8 bar	30 - 60	-

Table: 12 (Piping velocity range thumb rule) [2]

Area of pipe =
$$0.006 \text{ m}^2$$

d, Diameter of pipe = $(\text{Area} * 4 / 3.14) ^5$
= 0.092 m
= 92.788 mm

& with economic diameter formula:

d, optimum = 293 * mass flow $^{.53}$ * $\rho^{(-.37)}$

= 103.491 mm

So, take diameter as = 98 mm

So, cross sectional area = 7593.99 mm²

 $= 0.007 \text{ m}^2$

Pressure Drop Calculation:

Fluid velocity with new dia. = 2.224 m/s

Friction loss (Genereaux's formula):

 $\Delta P = 4.13 *10^10 *mass flow ^1.84 * viscosity ^.16 / (p* d^4.84)$

= 3.303 Kpa / m

For design criteria a higher value is taken

= 4.293 Kpa/m

Piping Length:

Total length for pump suction = Line Length + (Bend nos. * 30 * d / 1000) + (Valve nos. *18 * d / 1000)

6.72 m

Entry loss

 $= \rho^* u^2 / 2$

= 3.95 Kpa

Total length from pump discharge = Line Length + (Bend nos. * 30 * d / 1000) + (Valve nos. *18 *d / 1000)

71.05 m

Suction Calculation				
Line Size, mm		98		
	Flow	Norm.	Max.	Units
u1	Velocity	2.22	2.66	m/s
ΔΡ1	Friction Loss	3.303	4.293	Kpa/m
L1	Line length	6.721	_	m
ΔP1 * L1	Line loss	22.206	28.85	Кра
ρ*u1^2 / 2	Entrance	2.749	3.959	Кра
(40Kpa)	Strainer	-	-	Кра
	(1) Sub Total	24.955	32.818	Кра
z1	Static head	1.5	1.5	m
ρ*g*z1		16.328	16.328	Кра
	Equip. press.	490.33	490.33	Кра
	(2) Sub Total	506.661	506.661	Кра
(2) - (1)	(3) Suction press.	481.705	473.84	Кра
	(4) Vap. Press	0.1	0.1	Кра
(3) - (4)	(5) NPSH	481.605	473.742	Кра
(5) / ρg		44.211	43.489	m

Table 13 :- (Suction calculation of pump)

Discharge Calculation				
Line Size, mm		98		
	Flow	Norm.	Max.	Units
u2	Velocity	2.224	2.669	m/s
ΔΡ2	Friction Loss	3.303	4.293	Kpa/m
L2	Line length	71.056	-	m
ΔP2 * L2	Line loss	234.766	305.103	Кра
	Orifice	15	18	Кра
30%	Control valve	140	168	Кра
	Heat Exchanger -1	70	84	Кра
	Heat Exchanger -2	70	84	Кра
	(6) Dynamic loss	529.766	659.103	Кра
z2	Static head	11.023	-	m
ρ*g*z1		120.003	120.004	Кра
	Equip. press.	6706.681	6706.68	Кра
	(7) Sub Total	6826.685	6826.69	Кра
(7) + (6)	Discharge press.	7356.451	7485.79	Кра
(3) suc	Suction pressure	481.705	473.843	Кра
	(8) Diff. press.	6874.746	7011.95	Кра
(8) / ρg		631.106	643.701	. m

Table 14 :- (Discharge calculation of pump)

Pump Selection:

So, differential head maximum =

646.477806 m

Flowrate of solvent =

102.295251 m³/hr

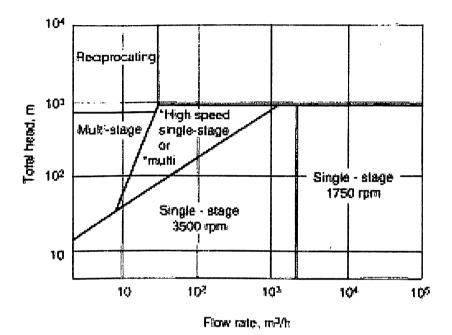


Fig 18: (Centrifugal pump selection guide. *Single-stage >1750 rpm, multi-stage 1750 rpm)

From the graph we read the type of pump that can be used High speed single or multistage centrifugal pump.

Power requirements:

$$hp = \left(gpm * \frac{\Delta p(psi)}{1714 * efficiency}\right) \qquad -----(13.1)$$

Pressure head:

6874.74 kpa

997.372 psia

Solvent rate:

267.845 GPM

Pump

efficiency:

80 %

Pump Power:

194 HP

14. COMPARISION OF TRAY TYPES

1) For valve tray [20]

Base : Qv * $(\rho v/(\rho l - \rho v))^5$ = $0.079 \text{ m}^3/\text{s}$

Top : Qv * $(\rho v/(\rho l - \rho v))^5 =$ $0.059 \text{ m}^3/\text{s}$

 $0.032 \text{ m}^3/\text{s}$ Bottom: Liquid flow =

 $0.016 \text{ m}^3/\text{s}$ Top: Liquid flow =

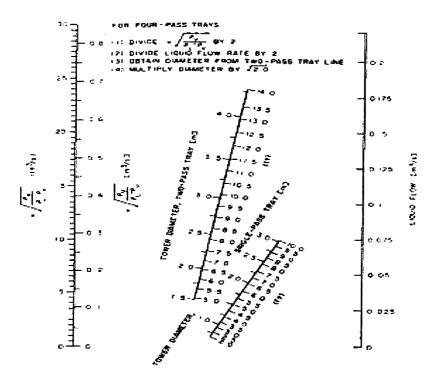


Figure 19. Chart for finding the diameters of valve trays.

Fropm the chart we get:

Single pass tray Bottom: 1.52 m

Single pass tray Top: 1.06 m

2) For Bubble cap tray: Jersey Critical Formula

$$D = .0956 * (Wv / K*(\rho l * \rho v)^5.5)^5$$
 ft ----- (14.1)
W, =vapor flow rate (lb/hr)

Tray Spacing in	18	24	30	30+
K	3.2	4.2	4.7	5

K (Spacing 18 in) =	3.2	
Bottom, Wv =	139442.9	lb/hr
ρl =	51.16	lb/ft³
ρv =	3.73	lb/ft³
Top, Wv =	119210.64	lb/hr
ρ l =	69.43	lb/ft³
ρν =	3.98	lb/ft³
So, Bottom Diameter =	1.63	m
Top Diameter =	1.37	m

3) For Sieve tray:

Flv bottom =
$$(L/G)^*(\rho v / \rho l)^5 = 0.36$$

Flv top = $(L/G)^*(\rho v / \rho l)^5 = 0.29$

Typical design values of Kv for Sieve, Bubble-Cap, and Valve Plates

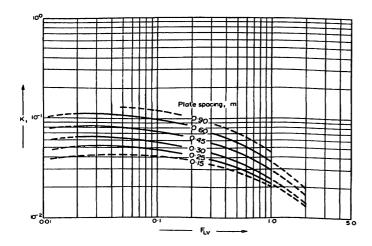


Fig 20: Flooding velocity, sieve plates

Kv, from table = 0.055 Bottom
Kv, from table = 0.05 Top
for tray spacing = 18 in
So. Base Uf = Kv *((
$$\rho$$
l - ρ v)/ ρ v)^.5 = 0.189 m/s
So. Top Uf = Kv *((ρ l - ρ v)/ ρ v)^.5 = 0.209 m/s
Design for flooding at maximum velocity of 85 %

Base Uv = Uf $^{*}.85$ =	0.16 m/s
Top Uv = Uf * .85 =	0.17 m/s
Тор,	1.19 m ²

Area	Base,	1.45	m ²
Diameter	Тор,	1.23	m
	Base,	1.36	m

	Column Diameter, m		
	Top Bottom		
Sieve Tray	1.23	1.36	
Valve Tray	1.06	1.52	
Bubble cap			
Tray	1.3	1.63	

Table 15: - (Tray diameter comparison)

15. RESULTS

1) VERTICAL SEPARATOR

Diameter:	36	in
Height:	10	ft
Volume:	22.75	ft ³
Seam to seam length:	9.54	ft
Slenderness ratio:	3.18	
Residence Time:	3	min

2) ABSORBER

Diameter =	1.5	m
Top flooding velocity =	0.17	m/s
Top gas flow rate =	0.75	kg.moles/s
Top lean sulfinol flow rate		_
=	0.32	kg.moles/s
Bottom flooding velocity =	0.16	m/s
Bottom gas flow rate =	0.83	kg.moles/s
Bottom rich sulfinol flow		
rate =	0.40	kg.moles/s
	•	
H ₂ S absorbing cap. of		
sulfinol=	0.22	moles H ₂ S / moles solvent
Column Area =	1.76	m ²
Downcomer area =	0.21	m ²
Hole area =	0.13	m ²
Hole diameter =	5	mm
Plate thickness =	5	mm
Wier length, lw =	1.14	m
Wier height, hw =	50	mm
Weir crest, how =	45.25	mm
Total plate pressure drop =	123.94	mm liquid
Downcomer backup		-
measured		
From plate surface, mm =	241.99	mm

Residence time =	3.03	s
A, Absorption factor =	2.00	
Number of real trays =	19.16	
Total height of column =	10.74	m

3) FLASH DRUM

Diameter =	0.98	m
Length =	2.94	m

4) Heat Exchanger

Outside diameter =	0.75	in
Inside diameter =	0.62	in
Length =	16	ft
No. of tubes =	58.90	
Tube bundle Dia =	217.75	mm
Re, Renolds no. =	12938.3	
Pr, =	5.86	
hi, inside heat transfer coeff. =	2735.57	kcal/hr m ² C
ho,outside heat transfer coeff.		
=	2261.41	kcal/hr m ² C

5) Cooler

Outside diameter =

Inside diameter =	0.62	in
Length =	16	ft
No. of tubes =	82.81	
Tube bundle Dia =	255.28	mm
Re, Renolds no. =	23192.6	
Pr, =	1.72	
hi, inside heat transfer coeff. =	2932.33	kcal/hr m² C
ho,outside heat transfer coeff. =	2424.06	kcal/hr m ² C

0.75 in

6) Stripper

Diameter =	4	m
Top flooding velocity =	1.66	m/s
Top steam flow rate =	3.15	kg.moles/s
Top rich sulfinol flow rate =	0.35	kg.moles/s i.e
Bottom flooding velocity =	1.72	m/s
Bottom steam flow rate =	3.12	kg.moles/s
Bottom lean sulfinol flow rate		
=	0.32	kg.moles/s i.e
Column Area =	12.56	m²
Downcomer area =	1.50	
Hole area =	0.95	
Hole diameter =	5	mm
Plate thickness =	5	mm
wier length, lw =	3.2	m
•		
Wier height, hw =	50	mm
Weir crest, how =	24.55	mm
Total plate pressure drop =	175.75	mm liquid
Downcomer backup measured		
From plate surface, mm =	253.94	mm
Residence time =	20.19	s
Stripping factor =	0.91	
Number of real trays =	22.29	
Total height of column =	18.66	m

7) LEAN SULFINOL SUPPLY PUMP

riigh speed single or multistage centrif	ugal pun	np
Differential head maximum =	643.70	m water
Flow rate of solvent =	60.82	m^3 / hr
NPSH =	44.21	m water

16. ENHANCED CORRELATIONS

For the current composition of natural gas to be treated for H_2S removal some correlations are been derived from the plant design calculation for quick reference.

Gas Composition	mol frac
C_1	0.735
C_2	0.083
C_3	0.021
i-C ₄	0.006
n-C ₄	0.002
<i>i</i> -C ₅	0.003
n - C_5	0.008
C_6	0.001
C ₇₊	0.001
N_2	0.050
H_2S	0.090
	1.000

For the case that by the change of operating pressure the partial pressure of the acid gas in natural gas changes, which tends to change in solvent loading. When the solvent loading is changed then the solvent flow rate required also changes. This leads to the change in diameter of the column, number of trays, pump differential head required & pump power required to transport lean solvent.

Therefore some correlations graphs as an extended emphasis are made so as at one look the relative deviation could be determined. This is limited to the give gas composition only.

1) Gas Flow Rate - Sulfinol Flow Rate

9% H2S	
MMSCF,	Sulfinol req,
gas	GPM
10	44.641
20	89.282
30	133.923
40	178.56
50	223.204
60	267.845
70	312.486
80	357.127
90	401.768
100	446.408

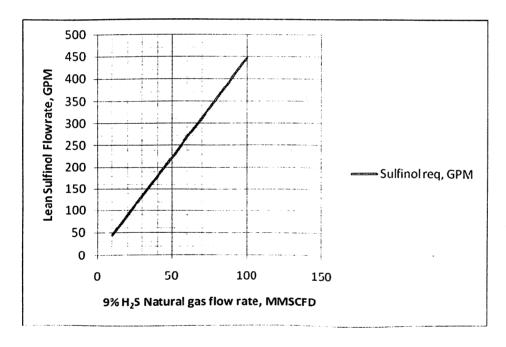


Fig: 21 (Gas - Solvent Flowrate)

2) Operating Pressure - Gas Flow Rate - Sulfinol Flow Rate

Op.	Sulfinol solvent flow rate, GPM							
	10	20	30	40	50	60	70	80
Press.	MMSCFD	MMSCFD	MMSCFD	MMSCFD	MMSCFD	MMSCFD	MMSCFD	MMSCFD
100	156.2	312.5	468.73	624.97	781.22	937.46	1093.7	1249.9
200	138.9	277.8	416.65	555.53	694	833.3	972.18	1111.0
300	125	250	374.98	499.98	624.87	749.97	874.96	999.95
400	108	215.8	323.65	431.53	539.41	647.29	755.17	863.05
500	86.31	172.6	258.92	345.22	431.53	517.83	604.14	690.44
600	71.92	143.8	215.76	287.69	359.61	431.53	503.45	575.37
700	61.64	123.3	184.94	246.59	308.23	369.88	431.53	493.17
800	53.94	107.9	161.82	215.76	269.71	323.65	377.59	431.52
900	47.95	95.9	143.84	191.79	239.74	287.69	335.63	383.58
1000	43.15	86.31	129.46	172.61	215.76	258.92	302.07	345.22

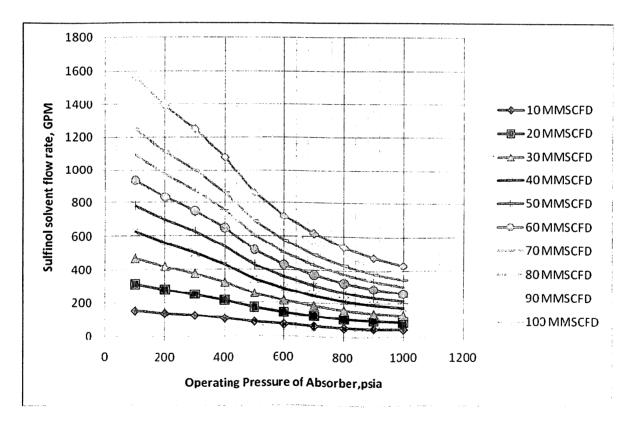


Fig: 21 (Operating Pressure - Gas Flow Rate - Sulfinol Flow Rate)

3) Gas Flow Rate - Sieve Tray Diameter - Bubble Cap Tray Diameter

9% H2S		Sieve Tra	y Dia. m.	·	Bubble Tray Dia. m.		
MMSCFD,			Avg. Sieve Tray			Avg. Bubble Cap Tray	
gas	Top	Bottom	Dia.	Тор	Bottom	Dia.	
10	0.50376	0.555686	0.529723	0.56297	0.6677	0.6153215	
20	0.71242	0.785858	0.749139	0.79616	0.9442	0.870195	
30	0.87253	0.96247	0.9175	0.975095	1.1564	1.0657675	
40	1.00751	1.11137	1.05944	1.1259	1.3354	1.230625	
50	1.12643	1.24255	1.18449	1.25884	1.493	1.3759	
60	1.23394	1.361147	1.2975435	1.37899	1.6355	1.507225	
70	1.33281	1.47021	1.40151	1.48948	1.7665	1.62799	
80	1.42484	1.57172	1.49828	1.592324	1.8885	1.740392	
90	1.51127	1.66705	1.58916	1.68891	2.003	1.845955	
100	1.59301	1.757233	1.6751215	1.78027	2.1114	1.94582	

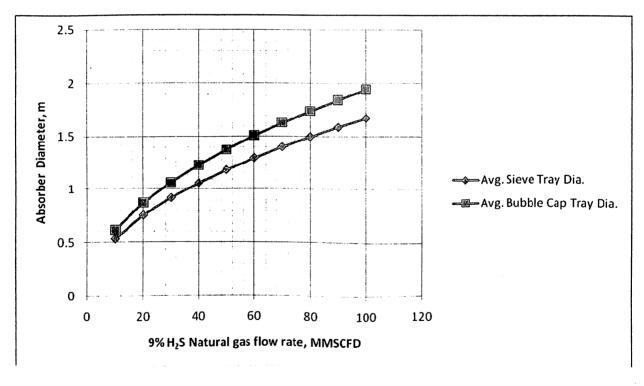


Fig: 22 (Gas Flow Rate - Sieve Tray Diameter - Bubble Cap Tray Diameter)

4) Operation Pressure - Gas Flow Rate - Sieve Tray Diameter

Opera										
ting	Avg. Sieve Tray Dia.									
	10	20	30	40	50	60	70	80	90	100
Press	MMS	MMS	MMS	MMS	MMS	MMS	MMS	MMS	MMS	MMS
ure	CFD	CFD	CFD	CFD	CFD	CFD	CFD	CFD	CFD	CFD
100	0.92	1.31	1.60	1.85	2.07	2.26	2.44	2.62	2.77	2.92
200	0.78	1.10	1.35	1.56	1.74	1.91	2.06	2.20	2.34	2.46
300	0.70	1.00	1.22	1.41	1.58	1.73	1.86	1.99	2.11	2.23
400	0.66	0.93	1.14	1.31	1.47	1.61	1.74	1.86	1.97	2.08
500	0.62	0.88	1.08	1.24	1.39	1.52	1.65	1.76	1.87	1.97
600	0.59	0.84	1.03	1.19	1.33	1.46	1.57	1.68	1.78	1.88
700	0.57	0.81	0.99	1.15	1.28	1.40	1.52	1.62	1.72	1.81
800	0.55	0.78	0.96	1.11	1.24	1.36	1.47	1.57	1.66	1.75
900	0.54	0.76	0.93	1.08	1.21	1.32	1.43	1.53	1.62	1.71
1000	0.53	0.74	0.91	1.05	1.18	1.29	1.39	1.49	1.58	1.66

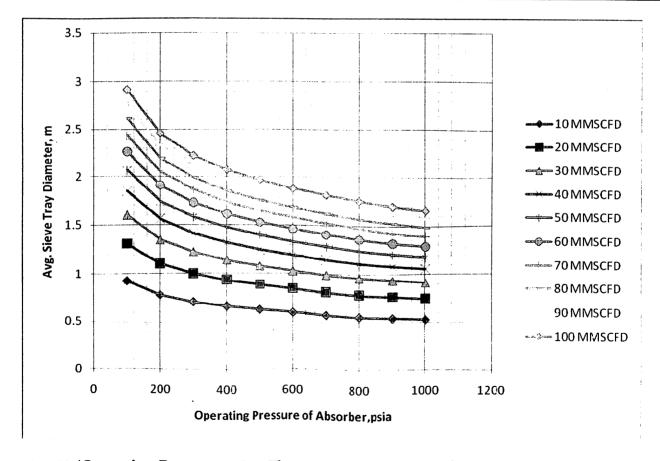


Fig: 23 (Operation Pressure - Gas Flow Rate - Sieve Tray Diameter)

5) Operation Pressure - Gas Flow Rate - Bubble Cap Tray Diameter

Op.	Avg. Bubble Cap Tray Dia.									
	10	20	30	40	50	60	70	80	90	100
	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC
Pres	FD	FD ·	FD							
100	1.0892	1.54	1.886	2.178	2.435	2.668	2.882	3.081	3.436	3.444
200	0.9165	1.296	1.587	1.833	2.049	2.245	2.425	2.592	2.903	2.898
300	0.8284	1.172	1.435	1.657	1.852	2.029	2.192	2.343	2.634	2.62
400	0.7709	1.09	1.335	1.542	1.724	1.888	2.04	2.18	2.461	2.438
500	0.729	1.031	1.263	1.458	1.63	1.786	1.929	2.062	2.336	2.305
600	0.6962	0.985	1.206	1.392	1.557	1.705	1.842	1.969	2.239	2.202
700	0.6695	0.947	1.16	1.339	1.497	1.64	1.771	1.893	2.16	2.117
800	0.6471	0.915	1.121	1.294	1.447	1.585	1.712	1.83	2.095	2.046
900	0.6278	0.888	1.087	1.256	1.404	1.538	1.661	1.776	2.039	1.985
1000	0.611	0.864	1.058	1.222	1.366	1.497	1.627	1.728	1.99	1.932

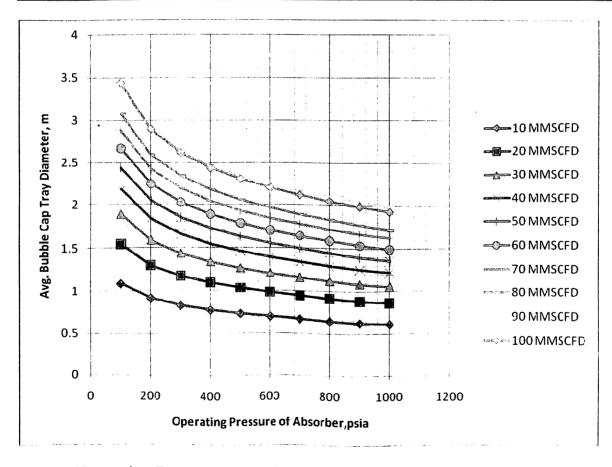


Fig: 24 (Operation Pressure - Gas Flow Rate - Bubble Cap Tray Diameter)

6) Operation Pressure - Gas Flow Rate - Pump Differential Head

Op.	Pump Differential Head									
	10	20	30	40	50	60	70	80	90	100
!	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC
Pres	FD	FD _	FD							
100	127	109	101	97	94	91	90	88	87	86
200	190	172	164	160	157	155	153	151	150	149
300	253	235	228	223	220	218	216	215	214	213
400	317	299	291	286	283	281	279	278	277	276
500	380	362	354	350	347	344	343	341	340	339
600	443	425	417	413	410	408	406	405	403	402
700	506	488	481	476	473	471	469	468	467	466
800	570	552	544	540	536	534	533	531	530	529
900	633	615	607	603	600	598	596	594	593	592
1000	696	678	671	666	663	661	659	658	657	656

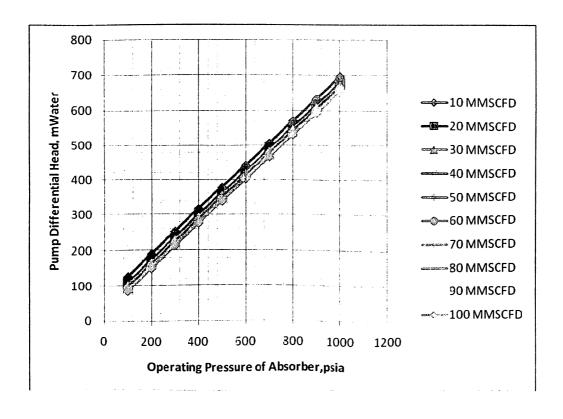


Fig: 25 (Operation Pressure - Gas Flow Rate - Pump Differential Head)

7) Operation Pressure - Gas Flow Rate - Pump Power

Op.	Pump Power in HP										
	10	20	30	40	50	60	70	80	90	100	
	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC	MMSC	
Pres	FD	FD	FD	FD	FD	FD	FD	FD	FD	FD	
100	5.4504	9.482	13.31	17.03	20.69	24.3	27.87	31.41	34.94	38.44	
200	8.706	15.99	23.08	30.05	36.97	43.83	50.66	57.46	64.24	70.99	
300	11.962	22.5	32.84	43.08	53.24	63.36	73.45	83.5	93.54	103.6	
400	15.217	29.02	42.61	56.1	69.52	82.9	96.24	109.5	122.8	136.1	
500	18.473	35.53	52.38	69.12	85.8	102.4	119	135.6	152.1	168.7	
600	21.728	42.04	62.14	82.14	102.1	122	141.8	161.6	181.4	201.2	
700	24.984	48.55	71.91	95.17	118.4	141.5	164.6	187.7	210.7	233.8	
800	28.24	55.06	81.68	108.2	134.6	161	187.4	213.7	240	266.3	
900	31.495	61.57	91.44	121.2	150.9	180.6	210.2	239.8	269.3	298.9	
1000	34.751	68.08	101.2	134.2	167.2	200.1	233	265.8	298.6	331.4	

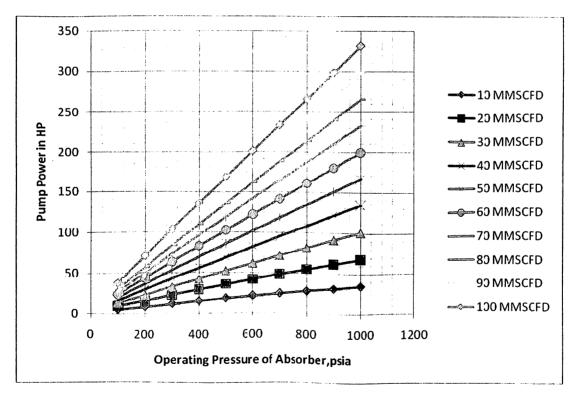


Fig: 26 (Operation Pressure - Gas Flow Rate - Pump Power)

17. SIMULATION OF DIPA PLANT USING HYSYS

This is the part 2 section of the project where the same composition of natural gas at 1000 psia & 43°C flowing at 20.0786 MMSCFD is treated for the removal of H₂S using DIPA as a solvent. But the plant design is carried out by simulation package HYSYS an ASPEN technology product. This is performed for getting a fair comparison between the hand calculation results and simulation result of the plant design. The detailed calculation result sheets are given in the appendix.

Basis of calculation by HYSYS:

Amine property package is a special property package designed to aid in the modeling of alkanolamine treating units in which H2S & CO2 are removed from gas streams. The property package contains data to model the absorption/desorption process where aqueous solution of amines, like MEA, DEA, MDEA, DIPA are used.

The following considerations are taken for design of the treatment plant:

- The process configuration
- The amine concentration
- The solution circulation rate
- The reboiler heat requirements
- The operating pressure & temperature

The AMSIM uses technology developed by DB Robinson & Associates ltd. To model the equilibrium solubility of acid gas in aqueous amine solutions.

Stage efficiency:

As defined by the amine property package is given by :-

$$\eta = \frac{(V_j + SV_j)Y_j - V_{j+1}Y_{ij+1}}{(V_j + SV_j)K_{1j}X_{ij} - V_{j+1}Y_{ij+1}}$$
 -----(17.1)

Where:

 η = Stage efficiency

i = Component number

j = Stage no.

K = Equilibrium ratio

V = Molar flow rate of vapor

X = Mole fraction in liquid phase

Y = Mole fraction in vapor phase

Equilibrium solubility of acid gas in amine solution:

- Kent & Eisenberg Model This is used to correlate the equilibrium solubility of acid gas in amine solution. Improvement are also made to the model to extend the reliable range to mole loading between .0001 and 1.2. A proprietary model was developed to predict the solubility of acid gas mixtures in tertiary amine solutions. Solubility of inert component such as hydrocarbon are modeled using a Henry's constant adjusted for ionic strength effects.
- Li- Mather Electrolyte model Amine property package is modified to simulate 3phase behavior. For the three phase simulation. The K values from the Peng Robinson property package were combined with the K values from the amines LLE
 & VLE package. This model shows a strong predictive capability over a wide range
 of temperatures, pressures, acid gas loadings & amine concentrations.

The vapor liquid equilibrium of the molecular species is given by:

$$y_i \Phi_i^T P = H_i x_i \gamma_i^L$$
 -----(17.2)

Where; Hi = Henry's constant

P = System Pressure

Xi, yi = mole fraction of molecular species i

 Φ_{i}^{v} = fugacity coefficient on the gas phase

 y_i^L = activity coefficient in the liquid phase

Fugacity coefficient is calculated by the Peng-Robinson equation of states, 1976:

$$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b) + b(V - b)}$$
 (17.3)

Brief comparison of results:

	Hand Cal.	Simulation
Absorber		
Diameter =	1.5 m	1.5 m
Tray Spacing =	0.45 m	0.5 m
Wier length, lw =	1.14 m	1.2 m
Wier height, hw =	50 mm	50 mm
Plate pressure drop =	1.21 kPa	4.7 kPa
Number of real trays =	19	20
Heat exchanger		
Tube Outside diameter =	19 mm	20 mm
Tube Thickness =	3.3 mm	2mm
Tube Length =	4.8 m	6 m
No. of tubes =	59 nos.	160 nos.
Stripper		
Diameter =	4 m	1.5 m
Tray Spacing =	0.76 m	0.55 m
wier length, lw =	3.2 m	1.2 m
Wier height, hw =	50 mm	50 mm
Number of real trays =	22 nos.	18 nos.

18. BRIEF DISCUSTION

When natural gas is produced from any reservoir, it contains some undesirable contents. H₂S is one of those, & natural gas containing it is called sour. Therefore before selling natural gas to the market it is treated to an acceptable limit for H₂S concentration. Now on the basis of the partial pressure of H₂S in natural gas an economical method is identified for the treatment process. Here we have chosen Sulfinol process for the treatment process.

To start with the plant design, 1st the aim of removal is identified so as the amount of H2S to be removed is calculated. Now both the sour & sweet gas properties are calculated for different composition i.e density, viscosity, compressibility factor. After that the solvent loading is calculated from the amount of H2S to be removed, implying to the solvent flow rate both lean & rich. Now the properties of the same solvent at different composition is looked from the data book. When both the top & bottom, liquid & gas flow rate is shown then the Flv is calculated for the diameter of column with a selected tray spacing. After the diameter calculation from the Souder & Brown's equation with relevant consideration of flooding velocity, the tray sizing is done. Different considerations are taken for safe operation in tray viz. weeping correction, entrainment check & pressure drop calculation. Now the downcomer liquid backup is calculated for proper operation i.e under satisfactory range, otherwise tray spacing is changed and checked again. Again the calculation is repeated for froth density consideration which comes about .4 to .7 times of the liquid density. This calculation is again checked for the downcomer liquid backup to be under satisfactory limits. Next tray (Murphy) efficiency is calculated and eventually the number of trays are even calculated by application of suitable absorption factors.

A material of construction of shell is chosen which is suitable for the given operation. Due all consideration of the material properties and load considerations the thickness of the shell is calculated.

Next the knockout drum dimensions are calculated for a given amount of pressure reduction, wherein a good amount of H₂S is removed (Solvent contains Sulfolane). Here an assumption is taken that no hydrocarbon is released in the knockout drum.

Lean/Rich heat exchanger is designed for the amount of heat duty calculated and a non corrosive material is chosen. In the same consideration cooler is also designed as the lean sulfinol out from the bottom of the stripper needs to be cooled before letting it into the absorber top (10°C bellow the absorber temperature).

Stripper calculation is done for the diameter, height, number of trays, check for weeping, entrainment check, pressure drop, downcomer liquid backup, shell thickness etc. As for a situation of low pressure in it, the diameter which is calculated comes higher than the absorber.

19. CONCLUSIONS

- In any acid gas treatment plant the main criteria of process selection depends on the location of the plant, giving the knowledge of the H₂S content of natural gas which is going to be available to the plant.
- For high concentration of H₂S in natural gas (i.e more than 60 psia partial pressure of H₂S) Sulfinol process is the most economical (especially in absence of CO₂).
- It is more economical to use a packed column as an absorber if gas flow rate is within 10 to 40 MMSCFD.
- It is more economical to use a bubble cap tray column for gas flow rate more than 60 MMSCFD.
- Account for corrosion allowance in shell thickness calculation is to be taken higher for bottom of the column.
- With low operating pressure in absorber, use of packed tower is economical above 200psia.
- At high operating pressure of absorber, differential head of the pump required do
 not deviate much for different gas flow rate whereas the power required by the
 same pump deviate big for different flow rates.
- In part 2 of the project, simulating the whole plant gives an accurate idea for process convergence which is comparable to sieve tray, bubble cap tray, valve tray & packing.

20. REFERENCES

- [1] Arthur L. Kohl and Richard Nielsen, 'Gas purification. 5th ed.', Gulf Publishing Company, 1997, Houston, TX, ISBN: 0-88415-220-0
- [2] R.K. Sinnott, 'Coulson & Richardson's Chemical Engineering Design. 3rd ed. Vol-6', Published by Butterworth Heinemann, 2003, Oxford ISBN 0 7506 41428.
- [3] H.K. Abdel-Aal and Mohamed Aggour, 'Petroleum & Gas Field Processing', Published by Marcel Dekker Inc, 2003, New York, ISBN: 0-8247-0962-4
- [4] Design & Operation of a Selective Sweetening Plant Using MDEA, Technical Papers, Bryan Research and Engineering, Inc, 2008
- [5] Boyun Gou & Ali Ghalambor, 'Natural Gas Engineering Handbook', Gulf Publishing Company, 2005, Houston, TX ISBN 0-9765113-3-9.
- [6] Robert E. Treybal, 'Mass Transfer Operations. 3rd ed', 2002 McGraw-Hill Publications.
- [7] Donald Q. Kern, 'Process Heat Transfer', McGraw-Hill Publications, 1950,Singapore, ISBN 0-07-0853533
- [8] Design and Operations of Natural Gas Sweetening Facilities Gas Sweetening Facilities. National Iranian Gas Company workshop, June-2008.
- [9] Solari, R. B., and R.L Bell, AICHE Journal, 1986.
- [10] E. R Freitas et al., Method of separating acid gases from gaseous mixtures, U.S Patent 3463603, Aug 26, 1969
- [11] Erik S. E. Werner et al, Process for the removal of hydrogen sulfide from gas stream, U.S Patent 4241032, Dec 23, 1980

- [12] James D Yearout, Gas treating process & system, U.S Patent 3594983, Jul 27, 1969.
- [13] Kenneth H Bacon, Natural gas treatment, U.S Patent 4128410, Dec 5, 1978.
- [14] Michael N. Papadopoulos et al., Method of separating acid gases from gaseous mixture, U.S Patent 3347621, Oct17, 1967
- [15] Charles R Ferrin et.al, Physical solvent for gas sweetening, U.S Patent 4360363, Nov 23, 1982

ń.

- [16] Thomas H Baize, Method and apparatus for sweetening natural gas, U.S Patent 4748011, May 31, 1988.
- [17] Paul J Capobianco et.al, Mixed solvent system for treating acid gas, U.S Patent 4705673, Nov 10, 1988
- [18] Robert D Fish et. al, Configuration & method of acid gas removal, U.S Patent Application US 2006 /0110300 A1, May 25, 2006
- [19] Kaaeid A Lokhandwala et.al, Natural gas treatment process for stimulated well.,
 U.S Patent Application US 2007 /0125537 A1, Jun 7, 2007
- [20] Bulletin 4900, Glitsch Inc., Dallas, TX,1974.
- [21] Kh. Mohamadbigy, M. Bazmi. R, Amine absorption column design using mass transfer rate simulation, Tehran, November 11, 2005, ISSN 1337-7027
- [22] HYSYS 3.2 Simulation basis, Hyprotech, Aspen technology Inc., Cambridge, U.S.A, 2003

21. APPENDIX

HYSYS simulation results for the following DIPA plant using the following gas ----

Gas Composition	mol frac
C_1	0.73500
C_2	0.08300
C_3	0.02100
i - C_4	0.00600
n-C ₄	0.00200
i - C_5	0.00300
n - C_5	0.00800
C_6	0.00100
C ₇₊	0.00100
N_2	0.05000
H_2S	0.09000
ų i	1.00000

Pressure: (psia)	1000 psia
TEMPERATURE(°F)	109.4°F
Flow rate : (MMSCFD)	20.0786

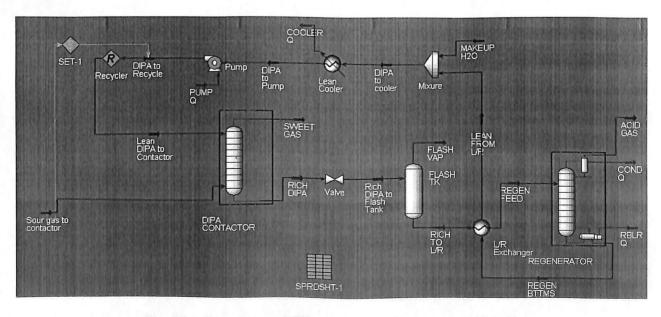


Fig 28 :- Developed PFD for DIPA plant using HYSYS

Case Name:	E: PRAKASH MUKHOPADHYAY DIPA.HSC
Unit Set:	SI
Date/Time:	Mon May 11 08:30:11 2009

			Date/Time: N	fon May 11 08:30:1	1 2009			
		Abso	rber: DIPA CO	ONTACTO	R @Main			
			CONNECTIONS					
			Inlet Stream		 /			
STREAM		Sta	qe		FROM UNIT OPER	ATION		
SOUR GAS TO CON		_TS-1						
DIPA TO CONT		TS-1	Outlet Stream	Recycle			<u>_</u>	Recycler
STREAM	NAME	Sta			TO UNIT OPERA	TION		
SWEET GAS	1_	TS-1	YV		10 0141 01214			
RICH DIPA FROM CO	ONT20	TS-1	\	/alve				Valve
			MONITOR					
			Specifications Summary					
	Specified Value	Current Va	lue Wt. Error	Wt. Tol.	Abs. Tol.	Active	Estimate	Used
						.1	J.,	
			SPECS					
		C	olumn Specification Parame	eters				
Fixed / Ranged:	Primary (Alternate:	Lower Bo	oring.	Upper	Bound:		
rixeu / Rangeu.	T Timory 7	Alterriate.		barra.	Оррег	Dourle.		
			SUBCOOLING					
Degrees of Subcooling								
Subcool to								
			User Variables					
			PROFILES					
			General Parameters					
Sub-Flow Sheet:		DIPA CONTAC		of Stages:				20 '
Sub-Flow Sheet:		DIPA CONTAC	CTOR (COL1) Number of	of Stages:				20
Sub-Flow Sheet:		DIPA CONTAC		Net	Liquid		et Vapour	20
Sub-Flow Sheet:			CTOR (COL1) Number of Profile Estimates Temperature (C)	Net	nole/h)		et Vapour (gmole/h)	
Sub-Flow Sheet:		TS-1	Profile Estimates Temperature (C) 37.78	Net	nole/h) 1649			909.6
Sub-Flow Sheet:	2_	TS-1 _TS-1	Number of Profile Estimates	Net	nole/h) 1649 1649			909.6 911.5
Sub-Flow Sheet:	2_ 3_	TS-1 TS-1 TS-1	Number of Number of	Net	1649 1649 1649			909.6 911.5 911.5
Sub-Flow Sheet:	2_ 3_ 4_	TS-1 _TS-1	Number of Profile Estimates	Net	nole/h) 1649 1649			909.6 911.5
Sub-Flow Sheet:	2_ 3_ 4_ 5_ 6_	TS-1 TS-1 TS-1 TS-1 TS-1 TS-1	Number of Number of	Net	1649 1649 1649 1649 1649 1649			909.6 911.5 911.5 911.5 911.5 911.5
Sub-Flow Sheet:	2_ 3 4 5_ 6	IS-1 IS-1 IS-1 IS-1 IS-1 IS-1 IS-1	TOR (COL1) Number of Profile Estimates Temperature (C) 37.78 34.97 34.97 34.97 34.97 34.98 34.98	Net	1649 1649 1649 1649 1649 1649 1649			909.6 911.5 911.5 911.5 911.5 911.5
Sub-Flow Sheet:	2_ 3 4_ 5_ 6 7_ 8_	IS-1 IS-1 IS-1 IS-1 IS-1 IS-1 IS-1 IS-1	TOR (COL1) Number of Profile Estimates Temperature (C) 37.78 34.97 34.97 34.97 34.98 34.98 34.98	Net	1649 1649 1649 1649 1649 1649 1649 1649			909.6 911.5 911.5 911.5 911.5 911.5 911.5
Sub-Flow Sheet:	2_ 3_ 4 5_ 6_ 7_ 8_ 9_	TS-1 	TOR (COL1) Number of Profile Estimates Temperature (C) 37.78 34.97 34.97 34.97 34.98 34.98 34.98 34.99	Net	1649 1649 1649 1649 1649 1649 1649 1649			909.6 911.5 911.5 911.5 911.5 911.5 911.5 911.6 911.6
Sub-Flow Sheet:	2_ 3_ 4 5_ 6_ 7_ 8_ 9_	IS-1 IS-1 IS-1 IS-1 IS-1 IS-1 IS-1 IS-1	TOR (COL1) Number of Profile Estimates Temperature (C) 37.78 34.97 34.97 34.97 34.97 34.98 34.98 34.99 35.00	Net	1649 1649 1649 1649 1649 1649 1649 1649			909.6 911.5 911.5 911.5 911.5 911.5 911.6 911.6 911.6
Sub-Flow Sheet:	2_ 3_ 4 5_ 6_ 7_ 8_ 9_ 10_ 11_	TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1	TOR (COL1) Number of Profile Estimates Temperature (C) 37.78 34.97 34.97 34.97 34.98 34.98 34.99 35.00 35.04	Net	1649 1649 1649 1649 1649 1649 1649 1649			909.6 911.5 911.5 911.5 911.5 911.5 911.5 911.6 911.6
Sub-Flow Sheet:	2_ 3 4 5_ 6 7_ 8_ 9_ 10_ 11_ 12_ 13_	IS-1 IS-1 IS-1 IS-1 IS-1 IS-1 IS-1 IS-1	TOR (COL1) Number of Profile Estimates Temperature (C) 37.78 34.97 34.97 34.97 34.98 34.98 34.98 34.99 35.00 35.04 35.11 35.26	Net	1649 1649 1649 1649 1649 1649 1649 1649			909.6 911.5 911.5 911.5 911.5 911.5 911.6 911.6 911.6 911.7 911.8
Sub-Flow Sheet:	2_ 3 4 5_ 6 7_ 8_ 9 10_ 11_ 12_ 13_	TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1	TOR (COL1) Number of Profile Estimates Temperature (C) 37.78 34.97 34.97 34.97 34.98 34.98 34.98 34.98 35.00 35.04 35.11 35.26 35.57 36.23	Net	1649 1649 1649 1649 1649 1649 1649 1649			909.6 911.5 911.5 911.5 911.5 911.5 911.6 911.6 911.6 911.7 911.8
Sub-Flow Sheet:	2_ 3 4 5_ 6 7_ 8_ 9_ 10_ 11_ 12_ 13_ 14_	TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1	TOR (COL1) Number of Profile Estimates Temperature (C) 37.78 34.97 34.97 34.97 34.98 34.98 34.98 35.00 35.04 35.11 35.26 35.57 36.23 37.54	Net	1649 1649 1649 1649 1649 1649 1649 1649			909.6 911.5 911.5 911.5 911.5 911.6 911.6 911.6 911.7 911.7 911.8 912.1
Sub-Flow Sheet:	2_ 3 4 5_ 6 7 8_ 9_ 10_ 11_ 12_ 13_ 14_ 15_	TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1	TOR (COL1) Number of Profile Estimates Temperature (C) 37.78 34.97 34.97 34.97 34.97 34.98 34.98 34.98 35.00 35.04 35.11 35.26 35.57 36.23 37.54 40.10	Net	1649 1649 1649 1649 1649 1649 1649 1649			909.6 911.5 911.5 911.5 911.5 911.6 911.6 911.6 911.8 912.1 912.1 912.8 913.8 916.3
Sub-Flow Sheet:	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	TS-1 TS-1	TOR (COL1) Number of Profile Estimates Temperature (C) 37.78 34.97 34.97 34.97 34.98 34.99 35.00 35.04 35.11 35.26 35.57 36.23 37.54 40.10 44.70	Net	1649 1649 1649 1649 1649 1649 1649 1649			909.6 911.5 911.5 911.5 911.5 911.6 911.6 911.6 911.7 911.8 912.1 912.1 913.8 916.3 921.5
Sub-Flow Sheet:	2_ 3 4 5_ 6_ 7_ 8_ 9_ 10_ 11_ 12_ 13_ 14_ 15_ 16_ 17_	TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1 TS-1	TOR (COL1) Number of Profile Estimates Temperature (C) 37.78 34.97 34.97 34.97 34.98 34.98 34.98 35.00 35.04 35.11 35.26 35.57 36.23 37.54 40.10 44.70	Net	1649 1649 1649 1649 1649 1649 1649 1649			909.6 911.5 911.5 911.5 911.5 911.6 911.6 911.6 911.8 912.1 912.1 912.8 913.8 916.3
Sub-Flow Sheet:	2_ 3 4 5_ 6 7_ 8_ 9_ 10_ 11_ 12_ 13_ 14_ 15_ 16_ 17_ 18_	IS-1 IS-1 IS-1 IS-1 IS-1 IS-1 IS-1 IS-1	TOR (COL1) Number of Profile Estimates Temperature (C) 37.78 34.97 34.97 34.97 34.98 34.99 35.00 35.04 35.11 35.26 35.57 36.23 37.54 40.10 44.70	Net	1649 1649 1649 1649 1649 1649 1649 1649			911.5 911.5 911.5 911.5 911.5 911.6 911.6 911.6 911.7 911.8 912.1 912.1 912.1 912.5 913.8 916.3

Stages	Overall Efficiency	Nitrogen	CO2	H2S	Methane	Ethane
1_TS-1	1.000	1.000	0.1401	0.5261	1.000	1.00
2_TS-1	1.000	1.000	0.1402	0.5279	1.000	1.00
3TS-1	1.000	1.000	0.1402	0.5279	1.000	1.0
I_TS-1	1.000	1.000	0.1403	0.5279	1.000	1.0
_TS-1	1.000	1.000	0.1403	0.5279	1.000	1.0
TS-1	1.000	1,000	0.1403	0.5279	1.000	1.0

Case Name:	E: PRAKASH MUKHOPADHYAY DIPA HSC
Unit Set:	SI
Date/Time:	Mon May 11 08:30:11 2009

Absorber: DIPA CONTACTOR @Main (continued)

		T vm	Stage Efficiencies			
Stages	Overall Efficiency	Nitrogen	CO2	H2S	Methane	Ethane
7_TS-1	1.000	1.000	0.1403	0.5279	1.000	1.000
8_TS-1	1.000	1.000	0.1403	0.5279	1.000	1,000
9_TS-1	1.000	1.000	0.1404	0.5279	1.000	1.000
10_TS-1	1.000	1.000	0.1405	0.5280	1.000	1.000
11_TS-1	1.000	1.000	0.1407	0.5280	1.000	1.000
12_TS-1	1.000	1.000	0.1412	0.5280	1.000	1.000
13_TS-1	1.000	1.000	0.1421	0.5281	1.000	1.000
14 TS-1	1.000	1.000	0.1439	0.5283	1.000	1.000
15_TS-1	1.000	1.000	0.1475	0.5286	1.000	1.000
16_TS-1	1.000	1.000	0.1543	0.5291	1.000	1.000
17_TS-1	1.000	1.000	0.1656	0.5297	1.000	
	1.000	1.000	0.1791			1.000
18_TS-1	1.000			0.5297	1.000	1.000
19_TS-1		1.000	0.1887	0.5284	1.000	1.000
20 TS-1	1.000	1.000	0.1547	0.5259	1.000	1.000
Stages	Overall Efficiency	Propane	i-Butane	n-Butane	i-Pentane	n-Pentane
1_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
2_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
3_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
4_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
5_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
6_TS-1	1.000	1.000	1.000	1.000	1,000	1.000
7_TS-1	· 1.000	1.000	1.000	1.000	1.000	1.000
8_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
9_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
10_TS-1	1.000	1.000	1.000	1.000		
11_TS-1	1.000	1.000			1.000	1.000
			1.000	1.000	1.000	1.000
12_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
13_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
14_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
15_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
16_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
17_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
18_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
TS-1	1.000	1.000	1.000	1.000	1.000	1.000
20_TS-1	1.000	1.000	1.000	1.000	1.000	1.000
Stages	Overall Efficiency	n-Hexane	n-Heptane	H2O	DisoPAmine	
1_TS-1	1.000	1.000	1.000	1.000	1.000	
2TS-1	1.000	1.000	1.000	1.000	1.000	
3_TS-1	1.000	1.000	1.000	1.000	1.000	
4_TS-1	1,000	1.000	1.000	1.000	1.000	
			1.000		1.000	
5 IS-1	1.000	1.000		1 7 1001		
5_TS-1 6 TS-1		1.000		1.000		
6_TS-1	1.000	1.000	1.000	1.000	1.000	
6_TS-1 7_TS-1	1.000 1.000	1.000 1.000	1.000 1.000	1.000 1.000	1.000 1.000	
6_TS-1 7_TS-1 8_TS-1	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	
6_TS-1 7_TS-1 8_TS-1 9_TS-1	1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000	
6_TS-1 7_TS-1 8_TS-1 9_TS-1 10_TS-1	1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000	1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000	1,000 1,000 1,000 1,000 1,000	
6 IS-1 7 IS-1 8 IS-1 9 IS-1 10 IS-1 11 IS-1	1,000 1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000 1.000	1,000 1,000 1,000 1,000 1,000 1,000	1,000 1,000 1,000 1,000 1,000 1,000	1,000 1,000 1,000 1,000 1,000 1,000	
6 TS-1 7 TS-1 8 TS-1 9 TS-1 10 TS-1 11 TS-1 12 TS-1	1,000 1,000 1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000	1,000 1,000 1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000 1.000 1.000	
6_TS-1 7_TS-1 8_TS-1 9_TS-1 10_TS-1 11_TS-1 12_TS-1 13_TS-1	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	
6_TS-1 7_TS-1 8_TS-1 9_TS-1 10_TS-1 11_TS-1 12_TS-1 13_TS-1 14_TS-1	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	
6_TS-1 7_TS-1 8_TS-1 9_TS-1 10_TS-1 11_TS-1 12_TS-1 13_TS-1 14_TS-1 15_TS-1	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	
6_TS-1 7_TS-1 8_TS-1 9_TS-1 10_TS-1 11_TS-1 12_TS-1 13_TS-1 14_TS-1 15_TS-1 16_TS-1	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	
6_TS-1 7_TS-1 8_TS-1 9_TS-1 10_TS-1 11_TS-1 12_TS-1 13_TS-1 14_TS-1 15_TS-1	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	
6_TS-1 7_TS-1 8_TS-1 9_TS-1 10_TS-1 11_TS-1 12_TS-1 13_TS-1 14_TS-1 15_TS-1 16_TS-1	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	
6_TS-1 7_TS-1 8_TS-1 9_TS-1 10_TS-1 11_TS-1 12_TS-1 13_TS-1 14_TS-1 15_TS-1 16_TS-1 17_TS-1	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	
6_TS-1 7_TS-1 8_TS-1 9_TS-1 10_TS-1 11_TS-1 12_TS-1 13_TS-1 14_TS-1 15_TS-1 16_TS-1 17_TS-1 18_TS-1	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	

Case Name: E:VPRAKASH MUKHOPADHYAY -- DIPA.HSC

Unit Set: SI

Date/Time: Mon May 11 08:30:11 2009

Absorber: DIPA CONTACTOR @Main (continued) HYSIM Inside-Out Column Solving Algorithm: Save Solutions as Initial Estimate: On Super Critical Handling Model: Simple K Trace Level: Low Damping Parameters Init from Ideal K's: Off Initial Estimate Generator Parameters Azeotrope Check: Off Iterative IEG (Good for Chemicals): Off Fixed Damping Factor: RATING Tray Sections TS-1 Tray Section Tray Diameter (m) 1.500 5.000e-002 Weir Height (m) Weir Length (m) 1.200 0.5000 Tray Space (m) (m3) 0.8836 Tray Volume Disable Heat Loss Calculations No Heat Model None Rating Calculations No Tray Hold Up (m3) 8.836e-002 Vessels Vessel Diameter Length Volume Orientation Vessel has a Boot **Boot Diameter Boot Length** Hold Up Other Equipment in Column Flowsheet **Pressure Profile** Pressure Drop (kPa) Pressure (kPa) 1_TS-1 6619 kPa 4.717 kPa _TS-1 6624 kPa 4.717 kPa 3_TS-1 4.717 kPa 6628 kPa 4_TS-1 6633 kPa 4.717 kPa 5__TS-1 6638 kPa 4.717 kPa 4.717 kPa 6_TS-1 6643 kPa 4.717 kPa _TS-1 6647 kPa 8_TS-1 6652 kPa 4.717 kPa 9_TS-1 4.717 kPa 6657 kPa 10_TS-1 6661 kPa 4.717 kPa 11_TS-1 6666 kPa 4.717 kPa 12_TS-1 6671 kPa 4.717 kPa 13_TS-1 6676 kPa 4.717 kPa 14_TS-1 6680 kPa 4.717 kPa 15_TS-1 6685 kPa 4.717 kPa TS-1 6690 kPa 4.717 kPa 17_TS-1 6694 kPa 4.717 kPa 18_ _TS-1 6699 kPa 4.717 kPa 19_TS-1 6704 kPa 4.717 kPa 20_TS-1 6709 kPa **Pressure Solving Options** 1.000e-004 * Pressure Drop Tolerance 1.000e-004 * Damping Factor 1.000 * Max Press Iterations 100 * **PROPERTIES**

Case Name:	E-PRAKASH MUKHOPADHYAY DIPA HSC
Unit Set:	SI
Date/Time:	Mon May 11 08:30:11 2009

Absorber: DIPA CONTACTOR @Main (continued)

		ibei. Dir A C			
		roperties : DIPA TO	CONT		·
	Overall	Aqueous Phase			
Vapour/Phase Fraction	0.0000	1.0000			
Temperature: (C)	35.00	35.00			
Pressure: (kPa)	6860	6860			ļ
Molar Flow (kgmole/h)	1647	1647			
Mass Flow (kg/h)	4.319e+004	4.319e+004			ļ <u></u>
Std Ideal Liq Vol Flow (m3/h)	43.27	43.27			
Molar Enthalpy (kJ/kgmole)	-2.536e+004	-2.536e+004			
Mass Enthalpy (kJ/kg)	-967.2	-967.2			
Moler Entropy (kJ/kgmole-C)	94.17	94.17			
Mass Entropy (kJ/kg-C)	3.592	3.592			<u> </u>
Heat Flow (kJ/h)	-4.178e+007	-4.178e+007			
Molar Density (kgmole/m3)	38.81	38.81			
Mass Density (kg/m3)	1018	1018			
Std Ideal Liq Mass Density (kg/m3)	998.3	998.3			
Liq Mass Density @Std Cond (kg/m3)	1022	1022			
Molar Heat Capacity (kJ/kgmole-C)	94.17	94.17			
Mass Heat Capacity (kJ/kg-C)	3.592	3.592			
Thermal Conductivity (VV/m-K)	0.4369	0.4369	-	1	
Viscosity (cP)	3.076	3.076		i -	
Surface Tension (dyne/cm)	59.43	59.43		1	
	26.22	26.22			
Molecular Weight	6.899e-002	6.899e-002			
Z Factor			S TO CONT	I	L
		roperties : SOUR GA	S TO CONI		T
	Overall	Vapour Phase			
Vapour/Phase Fraction	1.0000	1.0000			
Temperature: (C)	43.00	43.00			
Pressure: (kPa)	6895	6895			
Molar Flow (kgmole/h)	1000	1000			
Mass Flow (kg/h)	2.113e+004	2.113e+004			
Std Ideal Liq Vol Flow (m3/h)	56.22	56.22			
Molar Enthalpy (kJ/kgmole)	1.489e+004	1.489e+004			
Mass Enthalpy (kJ/kg)	704.9	704.9			
Moler Entropy (kJ/kgmole-C)	196.0	196.0			
Mass Entropy (kJ/kg-C)	9.276	9.276			
Heat Flow (kJ/h)	1.489e+007	1.489e+007			
Molar Density (kgmole/m3)	3.164	3.164			
Mass Density (kg/m3)	66.85	66.85			
Std Ideal Lig Mass Density (kg/m3)	375.8	375.8			
Liq Mass Density @Std Cond (kg/m3)		3,010			
Molar Heat Capacity (kJ/kgmole-C)	42.07	42.07			
Mass Heat Capacity (kJ/kg-C)	1.991	1.991			
Thermal Conductivity (W/m-K)	3.114e-002	3.114e-002		 	
	1.181e-002				
	1.181e-UU2	1.181e-002		 	
Surface Tension (dyne/cm)				 	
Molecular Weight	21.13	21.13			
Z Factor	0.8289	0.8289		L	<u> </u>
			A FROM CONT		
	Overall	Vapour Phase	Aqueous Phase		
Vapour/Phase Fraction	0.0000	0.0000	1.0000		
Temperature: (C)	59.95	59.95	59.95		
Pressure: (kPa)	6709	6709	6709		
Molar Flow (kgmole/h)	1738	0.0000	1738		
Mass Flow (kg/h)	4.627e+004	0.0000	4.627e+004		
Std Ideal Liq Vol Flow (m3/h)	47.22	0.0000	47.22		
Molar Enthalpy (kJ/kgmole)	-2.331e+004	1.571e+004	-2.331e+004		
Mass Enthalpy (kJ/kg)	-875.6	756.0	-875.6		
Molar Entropy (kJ/kgmole-C)	94.49	198.0	94.49		
Mass Entropy (kJ/kg-C)	3.549		3.549		
Heat Flow (kJ/h)		9.527			
	-4.051e+007	0.0000	-4.051e+007		
Molar Density (kgmole/m3)	39.91	2.794	39.91		
Mass Density (kg/m3)	1063	58.06	1063		ļ
Std Ideal Lig Mass Density (kg/m3)	979.8	368.5	979.8		
Lig Mass Density @Std Cond (kg/m3)	1078		1078	L	

Case Name:	E: 'PRAKASH MUKHOPADHYAY DIPA.HSC	
Unit Set:	SI	
Date/Time:	Mon May 11 08:30:11 2009	

			Abso	rber: D	IPA C	ONTACTO	OR (@Main (con	tinued)	
						A FROM CONT				
		Ov	erall	Vapour P		Aqueous Pha				
Molar Heat Capacity	(kJ/kgmole-C)		94.49		43.29		4.49			
Mass Heat Capacity	(kJ/kg-C)		3.549		2.083		3.549			
Thermal Conductivity	(VV/m-K)		0.4623 1.561		350e-002		4623			
Viscosity Surface Tension	(cP) (dyne/cm)		55.31	1.4	28e-002		<u>.561</u> 55.31			
Molecular Weight	(uyrie/ciii)		26.63		20.78		6.63			
Z Factor			3.069e-002		0.8670	6.0696				
21000				operties :	SWEET G		-002			
		Oye	erali	Vapour P				l		
Vapour/Phase Fraction			1.0000		1.0000					
Temperature:	(C)		34.97		34.97					
Pressure:	(kPa)		6619		6619					
Molar Flow	(kgmole/h)		909.6		909.6					
Mass Flow	(kg/h)	1	.805e+004	1.8	05e+004					
Std Ideal Liq Vol Flow	(m3/h)		52.26		52.26					
Molar Enthalpy	(kJ/kgmole)	1	.498e+004	1.4	98e+004					
Mass Enthalpy	(kJ/kg)		754.7		754.7					
Molar Entropy	(kJ/kgmole-C)		192.8		192.8					
Mass Entropy	(kJ/kg-C)		9.715		9.715					
Heat Flow	(kJ/h)	1	.362e+007	1.3	62e+007					
Molar Density	(kgmole/m3)		3.080		3.080					
Mass Density	(kg/m3)		61.13		61.13					
Std Ideal Liq Mass Density	(kg/m3)		345.4		345.4					
Liq Mass Density @Std Co										
Molar Heat Capacity	(kJ/kgmole-C)		42.30		42.30					
Mass Heat Capacity	(kJ/kg-C)		2.131		2.131					
Thermal Conductivity	(VV/m-K)		3.163e-002		63e-002					
Viscosity	(cP)	1	1.129e-002	1.1	29e-002					
Surface Tension	(dyne/cm)									
Molecular Weight			19.85		19.85					
Z Factor			0.8389		0.8389			<u> </u>		
				SUMI	MARY					
Fla Danie.				. datas	J			antina autina in antani	la d	
Flow Basis:				Molar		Th	e comp	osition option is select	ted	
					nposition					
	DIPA TO CO		SOUR GAS							
Flow Rate (kgmole/h)	1.647285e+	-03	1.00000	00e+03						
NBunan	0.0000			-						
Nitrogen			0.05							
CO2 H2S	0.0000 0.0002		0.00		 					
Methane	0.0002		0.73		ļ					
	0.0000									
Ethane Propane	0.0000		0.08		 		ļ			
i-Butane	0.0000		0.00		 		 			
n-Butane	0.0000		0.00							
i-Pentane	0.0000		0.00		 					
n-Pentane	0.0000		0.00				 			
n-Hexane	0.0000		0.00							
n-Heptane	0.0000		0.00							
H2O	0.9286		0.00		·					
DisoPAmine	0.0712		0.00		 					
Flow Basis:				Molar		Th	e comp	osition option is select	ed	
				Feed	Flows					
	DIPA TO CO	TAC	SOUR GAS	TO CONT						
Flow Rate (kgmole/h)	1.647285e-	03	1.00000	00e+03						
				-			L			
Nitrogen (kamale/h)	0.0000		50.0							
CO2 (kgmole/h)	0.0000		0.00							
H2S (kgmole/h)	0.3977		90.0		L		.		<u> </u>	
Methane (kgmole/h)	0.0000		735.0				L	and the second s		
Ethane (kgmole/h)	0.0000		83.0				ļ		ļ	
Propane (kgmole/h)	0.0000		21.0	UUO			<u> </u>			

Case Name:	E: PRAKASH MUKHOPADHYAY DIPA.HSC
Unit Set:	SI
Date/Time:	Mon May 11 08:30:11 2009

Absorber: DIPA CONTACTOR @Main (continued

		Absolbei. D	II A CONTACTO	OR @Main (con	tinued)
		SUM	MARY		
	DIPA TO CONT	SOUR GAS TO CONT			
i-Butane (kgmole/h)	0.0000	6.0000			
n-Butane (kamole/h)	0.0000	2.0000			
i-Pentane (kgmole/h)	0.0000	3.0000			
n-Pentane (kgmole/h)	0.0000	8.0000			
n-Hexane (kgmole/h)	0.0000	1.0000			
n-Heptane (kgmole/h)	0.0000	1.0000			
H2O (kgmole/h)	1.529587e+03	0.0000			
DisoPAmine (kgmole/h)	117.3003	0.0000			
			ducts		
Flow Basis:		Molar		e composition option is select	ed
			ompositions		
	SWEET GAS	RICH DIPA FROM CONT			
Flow Rate (kgmole/h)	909.6114	1.737674e+03			
		***	-		
Nitrogen	0.0549	0.0000			
CO2	0.0000	0.0000			
H2S	0.0000	0.0520			
Methane	0.8066	0.0008			
Ethane	0.0911	0.0001			
Propane	0.0231	0.0000			
i-Butane	0.0066	0.0000			
n-Butane	0.0022	0.0000			
i-Pentane	0.0033	0.0000			
n-Pentane	0.0088	0.0000			
n-Hexane	0.0011	0.0000			
n-Heptane	0.0011	0.0000			
H2O	0.0012	0.8796			
DisoPAmine	0.0000	0.0675		L	
Flow Basis:		Molar		e composition option is select	led
			t Flows		
	SWEET GAS	RICH DIPA FROM CONT			
Flow Rate (kgmole/h)	909.6114 *	1.737674e+03 *			
	40 0A06 *	0.0504 *		· · · · · · · · · · · · · · · · · · ·	
Nitrogen (kgmole/h)	43.5430	0.0007			
CO2 (kgmole/h)	0.0000 *			1	
H2S (kgmole/h) Methane (kgmole/h)	0.0004	0.0000 *	•		
	0.0004 *	90.3972 *			
	733.6823	90.3972 * 1.3177 *			
Ethane (kgmole/h)	733.6823 * 82.8879 *	90.3972 * 1.3177 * 0.1121 *			
Ethane (kgmole/h) Propane (kgmole/h)	733.6823 * 82.8879 * 20.9807 *	90.3972 * 1.3177 * 0.1121 * 0.0193 *			
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h)	733.6823 * 82.8879 * 20.9807 * 5.9996 *	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0004 *			
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h)	733.6823 * 82.8879 * 20.9807 * 5.9996 * 1.9999 *	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0004 * 0.0001 *			
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pertane (kgmole/h)	733.6823 * 82.8879 * 20.9807 * 5.9996 * 1.9999 * 2.9998 *	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0004 * 0.0001 * 0.0002 * *			
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pertane (kgmole/h) n-Pertane (kgmole/h)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 2.9998 * 7.9995 *	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0004 * 0.0001 * 0.0002 * 0.0005 * *			
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pertane (kgmole/h) n-Pertane (kgmole/h) n-Hexane (kgmole/h)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 2.9996 * 7.9995 *	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0004 * 0.0001 * 0.0002 * 0.0005 * 0.0005 * *			
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pertane (kgmole/h) n-Pertane (kgmole/h) n-Hexane (kgmole/h) n-Heptane (kgmole/h)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 7.9995 * 0.9995 * 0.9999 *	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0004 * 0.0001 * 0.0002 * 0.0005 * 0.0005 * 0.0005 * 0.0001 * 0.0001 * 0.0005 * 0.0005 * 0.0005 * 0.0001 * 0.			
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pentane (kgmole/h) n-Pentane (kgmole/h) n-Hexane (kgmole/h) n-Heptane (kgmole/h) h-Heptane (kgmole/h)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 7.9995 * 0.9995 * 0.9999 * 1.1118 *	90.3972 * 1.3177 * 0.1121 * 1.0193 * 0.0004 * 0.0001 * 0.0002 * 0.0005 * 0.0005 * 0.0001 * 1.528475e+03 * *			
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pentane (kgmole/h) n-Pentane (kgmole/h) n-Hexane (kgmole/h) H2O (kgmole/h) DisoPAmine (kgmole/h)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 7.9995 * 0.9995 * 0.9999 * 1.1118 *	90.3972 * 1.3177 * 0.1121 * 2.0193 * 0.0004 * 0.0001 * 0.0002 * 0.0005 * 0.0005 * 0.0005 * 1.528475e+03 * 117.2999 * *	Th	e composition ordion is select	ed
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pentane (kgmole/h) n-Pentane (kgmole/h) n-Hexane (kgmole/h) n-Heptane (kgmole/h) H2O (kgmole/h)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 7.9995 * 0.9995 * 0.9999 * 1.1118 *	90.3972 * 1.3177 * 0.1121 * 2.00193 * 2.0004 * 2.0001 * 2.0005 * 2		e composition option is select	ed
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pentane (kgmole/h) n-Pentane (kgmole/h) n-Hexane (kgmole/h) H2O (kgmole/h) DisoPAmine (kgmole/h)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 7.9995 * 0.9995 * 0.9999 * 1.1118 * 0.0004 *	90.3972 * 1.3177 * 0.1121 * 2.00193 * 2.0004 * 2.0001 * 2.0005 * 2	Th	e composition option is select	ed
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pentane (kgmole/h) n-Pentane (kgmole/h) n-Hexane (kgmole/h) H2O (kgmole/h) DisoPAmine (kgmole/h)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 2.9995 * 0.9999 * 1.1118 * 0.0004 * SAVEET GAS	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0004 * 0.0001 * 0.0005 * 0.0005 * 0.0005 * 1.528475e+03 * 117.2999 * Molar Product F		e composition option is select	ed
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pentane (kgmole/h) n-Pentane (kgmole/h) n-Hexane (kgmole/h) n-Hexane (kgmole/h) h-Heptane (kgmole/h) DisoPAnine (kgmole/h) Flow Basis:	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 7.9995 * 0.9995 * 0.9999 * 1.1118 * 0.0004 *	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0004 * 0.0001 * 0.0005 * 0.0005 * 0.0001 * 1.528475e+03 * 117.2999 * Molar Product F RICH DIPA FROM CONT		e composition option is select	ed
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pentane (kgmole/h) n-Pentane (kgmole/h) n-Hexane (kgmole/h) n-Hexane (kgmole/h) h-Heptane (kgmole/h) DisoPAnine (kgmole/h) Flow Basis:	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 7.9995 * 0.9999 * 1.1118 * 0.0004 * \$\$WEET GAS\$ 909.6114	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0004 * 0.0001 * 0.0005 * 0.0005 * 0.0001 * 1.528475e+03 * 117.2999 * Molar Product F RICH DIPA FROM CONT		e composition option is select	ed
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pertane (kgmole/h) i-Pertane (kgmole/h) n-Pertane (kgmole/h) n-Hexane (kgmole/h) h-Hexane (kgmole/h) Classe (kgmole/h) DisoPAntine (kgmole/h) Flow Basis:	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 2.9998 * 7.9995 * 0.9999 * 1.1118 * 0.0004 * \$\$WEET GAS \$99.6114	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0004 * 0.0001 * 0.0005 * 0.0005 * 0.0005 * 1.528475e+03 * 117.2999 * Molar Product F RICH DIPA FROM CONT 1.737674e+03 *		e composition option is select	ed
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) n-Pertane (kgmole/h) n-Pertane (kgmole/h) n-Hexane (kgmole/h) n-Heptane (kgmole/h) n-Heptane (kgmole/h) H2O (kgmole/h) DisoPAnine (kgmole/h) Flow Basis:	733.6823 * 82.8879 * 20.9807 * 5.9996 * 1.9999 * 2.9998 * 7.9995 * 0.9999 * 1.1118 * 0.0004 * \$\$AVEET GAS\$ 909.6114	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0004 * 0.0001 * 0.0005 * 0.0005 * 0.0005 * 1.5284756+03 * 117.2999 * Molar Product F RICH DIPA FROM CONT 1.737674+03 0.1008		e composition option is select	ed
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) n-Pertane (kgmole/h) n-Pertane (kgmole/h) n-Hexane (kgmole/h) n-Hexane (kgmole/h) H2O (kgmole/h) DisoPAmine (kgmole/h) Flow Basis: Flow Rate (kgmole/h) Nitrogen (%) CO2 (%)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 2.9998 * 7.9995 * 0.9995 * 0.9999 * 1.1118 * 0.0004 * \$\$AVEET GAS\$ 909.6114	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0004 * 0.0001 * 0.0005 * 0.0005 * 0.0005 * 117.2999 * Molar Product F RICH DIPA FROM CONT 1.737674e+03 * 0.1008 99.6607		e composition option is select	ed
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) n-Pertane (kgmole/h) n-Pertane (kgmole/h) n-Hexane (kgmole/h) h-Hexane (kgmole/h) H2O (kgmole/h) DisoPAmine (kgmole/h) Flow Basis: Flow Rate (kgmole/h) Nitrogen (%) CO2 (%) H2S (%)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 2.9998 * 7.9995 * 0.9999 * 1.1118 * 0.0004 * \$\$AVEET GAS\$ 909.6114	90.3972 * 1.3177 * 0.1121 * 0.0193 *		e composition option is select	ed
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pertane (kgmole/h) n-Pertane (kgmole/h) n-Hexane (kgmole/h) n-Hexane (kgmole/h) ht20 (kgmole/h) DisoPAntine (kgmole/h) Flow Basis: Flow Rate (kgmole/h) Nitrogen (%) CO2 (%) H2S (%) Methane (%)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 7.9995 * 0.9999 * 1.1118 * 0.0004 * * \$\$VEET GAS\$ 909.6114	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0094 * 0.0001 * 0.0002 * 0.0005 * 0.0005 * 0.0001 * 1.528475e+03 * 117.2999 * Moter Product F RICH DIPA FROM CONT 1.737674e+03 * 0.1008 * 99.6607 * 99.9995 * 0.1793		e composition option is select	ed
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) i-Pertane (kgmole/h) i-Pertane (kgmole/h) n-Hexane (kgmole/h) n-Hexane (kgmole/h) h-Hexane (kgmole/h) DisoPAmine (kgmole/h) DisoPAmine (kgmole/h) Flow Basis: Flow Rate (kgmole/h) Nitrogen (%) CO2 (%) H2S (%) Methane (%)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 7.9995 * 0.9999 * 1.1118 * 0.0004 * \$\$ \$\$ \$99.6114 \$\$ \$99.8992 \$\$ 0.393 \$\$ 0.0005 \$\$ 99.8207 \$\$ 99.8649 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0094 * 0.0005 * 0.0005 * 0.0005 * 0.0005 * 1.528475e+03 * 117.2999 * Molar Product F RICH DIPA FROM CONT 1.737674e+03 * 0.1008 * 99.6607 * 99.9995 * 0.1793 * 0.1351		e composition option is select	ed
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) n-Pentane (kgmole/h) n-Pentane (kgmole/h) n-Heytane (kgmole/h) h-Heytane (kgmole/h) H2O (kgmole/h) DisoPAmine (kgmole/h) Flow Basis: Flow Rate (kgmole/h) Nitrogen (%) CO2 (%) H2S (%) Methane (%) Ethane (%) Propane (%)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 2.9998 * 7.9995 * 0.9995 * 0.9999 * 1.1118 * 0.0004 * * * * * * * * * * * * * * * * * *	90.3972 * 1.3177 * 0.1121 * 0.0193 * 0.0004 * 0.0001 * 0.0005 * 0.0005 * 0.0005 * 1.528475e+03 * 117.2999 * Molar Product F RICH DIPA FROM CONT 1.737674e+03 0.1008 99.6607 99.9995 0.1793 0.1351 0.0918		e composition option is select	ed
Ethane (kgmole/h) Propane (kgmole/h) i-Butane (kgmole/h) n-Butane (kgmole/h) n-Pertane (kgmole/h) n-Pertane (kgmole/h) n-Hexane (kgmole/h) n-Hexane (kgmole/h) h-Hoptane (kgmole/h) H2O (kgmole/h) H3O (kgmole/h) Flow Basis: Flow Rate (kgmole/h) Nitrogen (%) CO2 (%) H2S (%) Methane (%) Ethane (%) Propane (%) i-Butane (%)	733.6823 * 62.8879 * 20.9807 * 5.9996 * 1.9999 * 2.9998 * 7.9995 * 0.9995 * 0.9999 * 1.1118 * 0.0004 * * * * * * * * * * * * * * * * * *	90.3972 * 1.3177 * 0.1121 * 1.3177 * 0.1121 * 1.3177 * 0.1121 * 1.3177 * 1.		e composition option is select	ed

Case Name:	E: PRAKASH MUKHOPADHYAY DIPA.HSC
Unit Set:	SI
Date/Time:	Mon May 11 08:30:11 2009

Absorber: DIPA CONTACTOR @Main (continued)

SUMN	MARY							

	SWEET GAS	RICH DIPA FROM CONT	1	
11				
n-Hexane (%)	99.9532	0.0468		
n-Heptane (%)	99.9939	0.0061		
H2O (%)	0.0727	99.9273		
DisoPAmine (%)	0.0003	99.9997		

COLUMN PROFILES

Reflux Ratio:	1.813 Reb	oil Ratio:	0.5515 The	Flows Option is Selected	Flow Basis:	Molar
			Column Profiles Flov	IS		
	Temperature (C)	Pressure (kPa)	Net Lig (kgmole/h)	Net Vap (kgmole/h)	Net Feed (kgmole/h)	Net Draws (kgmole/h)
1_TS-1	34.97	6619	1649		1647	909.6
2_TS-1	34.97	6624	1649	911.5	***	
3_TS-1	34.97	6628	1649	911.5		•••
4_TS-1	34.97	6633	1649	911.5		
5 TS-1	34.97	6638	1649	911.5	•••	•••
6 TS-1	34.98	6643	1649	911.5	•••	
7_TS-1	34.98	6647	1649	911.5		
8 TS-1	34.99	6652	1649	911.6		
9_TS-1	35.00	6657	1649	911.6		***
10_TS-1	35.04	6661	1649	911.6		
11_TS-1	35.11	6666	1649	911.7		
12 TS-1	35.26	6671	1650	911.8		
13_TS-1	35.57	6676	1650	912.1	•••	•••
14_TS-1	36.23	6680	1651	912.6		
15_TS-1	37.54	6685	1654	913.8		***
16_TS-1	40.10	6690	1659	916.3	•••	***
17_TS-1	44.70	6694	1670	921.5	•••	
18_TS-1	51.71	6699	1689	932.1		
19_TS-1	59.00	6704	1717	951.6		
20 TS-1	59.95	6709		978.8	1000	1738

	Column Profiles Energy							
	Temperature (C)	Liquid Enthalpy (kJ/kgmole)	Vapour Enthalpy (kJ/kgmole)	Heat Loss (kJ/h)				
1_TS-1	34.97	-2.532e+004	1.498e+004					
2_TS-1	34.97	-2.532e+004	1.498e+004					
3_TS-1	34.97	-2.532e+004	1.498e+004					
4_TS-1	34.97	-2.532e+004	1.498e+004					
5TS-1	34.97	-2.532e+004	1.498e+004					
6TS-1	34.98	-2.532e+004	1.498e+004					
7_TS-1	34.98	-2.532e+004	1.498 c+ 004					
8_TS-1	34.99	-2.532e+004	1.498e+004					
9_TS-1	35.00	-2.531e+004	1.498e+004					
10_TS-1	35.04	-2.531e+004	1.498e+004					
11_TS-1	35.11	-2.531e+004	1.498e+004					
12_TS-1	35.26	-2.529e+004	1.499e+004					
13_TS-1	35.57	-2.526e+004	1.500e+004					
14_TS-1	36.23	-2.521e+004	1.502e+004					
15_TS-1	37.54	-2.509e+004	1.507e+004					
16_TS-1	40.10	-2.487e+004	1.517e+004					
17TS-1	44.70	-2.448e+004	1.534e+004					
18_TS-1	51.71	-2.390e+004	1.559e+004					
19TS-1	59.00	-2.332e+004	1.580e+004					
20_TS-1	59.95	-2.331e+004	1.571e+004	Aug.				

FEEDS / PRODUCTS

Flow Basis:	low Basis: Moler							
	Stream	Type	Duty (k	J/h) State	Flows	(kamole/h)	Enthalpy (kJ/kgmole)	Temp (C)
4 70.4	DIPA TO CONT	Feed		Liquid	1647		-2.536e+004 *	35.00 *
1TS-1	SWEET GAS	Draw		Vapour	909.6	8	1.498e+004 *	34.97 *
2_TS-1								
3_TS-1				1				
4_TS-1								
5TS-1			L					
6 TS-1								

Case Name: E:'PRAKASH MUKHOPADHYAY -- DIPA.HSC
Unit Set: SI
Date/Time: Mon May 11 08:30:11 2009

Absorber: DIPA CONTACTOR @Main (continued)

				FEFNS	/PRODUCTS					
				I LLD3						
7_TS-1	<u> </u>									
8 TS-1										
9_TS-1								~ ^		
10_TS-1				l						
11 TS-1										
12_TS-1										
13_TS-1										
14 TS-1										
15_TS-1										
16_TS-1										
17 TS-1										
18_TS-1										
19_TS-1									•	
20_TS-1	SOUF	R GAS TO CO	Feed		Vapour	1000	*	1.489e+004	*	43.00
20_13-1	RICH	DIPA FROM C	Draw	l l	Liquid	1738	*	-2.331e+004	2	59.95
					SETUP					
				Sut	-Flowsheet					
		Feed St	treams				Produ	ct Streams		
Internal Stre	am	Externa	l Stream	Transfer Basis	Intern	al Stream	Exte	rnal Stream		ransfer Basis
SOUR GAS TO	CONT	Sour gas to co	ntactor @Main	P-H Flash	SVVE	ET GAS	SWEET	GAS @Main		P-H Flash
DIPA TO CO	NT .	ean DIPA to Co	ontactor @Mair	P-H Flash	RICH DIPA	FROM CONT	RICH	DIPA @Main		P-H Flash
		1							1	

	VARI	ABLES						
	Column Flowsheet Vars Available as Parameters							
Data Source	Variable	Component	Description					

COMPONENT MAPS

	Feed Streams	
Feed Name	In to SubFlowSheet	Out of SubFlowSheet
SOUR GAS TO CONT		
DIPA TO CONT		
	Product Stream	
Product Name	In to SubFlowSheet	Out of SubFlowSheet
SWEET GAS		
RICH DIPA FROM CONT		

Case Name: E:PRAKASH MUKHOPADHYAY -- DIPA.HSC
Unit Set: SI
Date/Time: Mon May 11 08:47:16 2009

Separator: FLASH TK CONNECTIONS Inlet Stream From Unit Operation Stream Name Rich DIPA to Flash Tank Valve Valve **Outlet Stream** Stream Name To Unit Operation FLASH VAP Heat Exchanger: L/R Exchanger RICH TO LIR **Energy Stream** From Unit Operation Stream Name **PARAMETERS** Vessel Volume: --- Level SP: 50.00 % Liquid Volume: 620.5 kPa Pressure Drop: 0.0000 kPa * Duty: 0.0000 kJ/h Heat Transfer Mode: Heating Vessel Pressure: **User Variables RATING** Sizing Separator has a Boot: No Cylinder Vertical Height Volume Level Taps: Level Tap Specification PV Low Level Tap PV High OP High OP Low Level Taps: Calculated Level Tap Values Level Tap Liquid Level Aqueous Level Options 100.00 * (%)_ PV Work Term Contribution **PROPERTIES** Rich DIPA to Flash Tank Vapour Phase Overall Aqueous Phase Vapour/Phase Fraction 0.0013 0.0013 0.9987 Temperature: (C) 59.74 59.74 59.74 (kPa) 620.5 * Pressure: 620.5 620.5 (kgmole/h) 1738 Molar Flow 2.209 1735 4.627e+004 (kg/h) 51.72 Mass Flow 4.621e+004 (m3/h) 47.22 Std Ideal Liq Vol Flow 47.11 0.1113 -2.331e+004 (kJ/kgmole) 1.354e+004 -2.336e+004 Molar Enthalpy -875.6 -877.3 Mass Enthalpy (kJ/kg) 578.0 Molar Entropy (kJ/kgmole-C) 94.67 220.6 94.51 Mass Entropy (kJ/kg-C) 3.556 3.549 9.423 -4.051e+007 Heat Flow (kJ/h) 2.990e+004 -4.054e+007 Molar Density 32.69 39.91 (kgmole/m3) 0.2283 870.4 Mass Density (kg/m3) 1063 5.345 Std Ideal Liq Mass Density 979.8 (kg/m3) 464.9 981.0 Liq Mass Density @Std Cond 1078 1078 (ka/m3) Molar Heat Capacity 94.46 (kJ/kgmole-C) 38.91 94.53 Mass Heat Capacity 3.548 (kJ/kg-C) 3.550 1.662 Thermal Conductivity (WAn-K) 2.976e-002 0.4621 Viscosity (cP) 1.318e-002 1 569 55.34 Surface Tension (dyne/cm) 55.34 Molecular Weight 26.63 26.63 23.42 Z Factor 5.617e-003 0.9822

Case Name:	E: PRAKASH MUKHOPADHYAY DIPA.HSC
Unit Set:	SI
Date/Time:	Mon May 11 08:47:16 2009

Separator: FLASH TK (continued)

FLASH VAP

	Overall	Vapour Phase	Aqueous Phase	
Vapour/Phase Fraction	1.0000	1.0000	0.0000	
Temperature: (C)	59.74	59.74	59.74	
Pressure: (kPa)	620.5	620.5	620.5	
Molar Flow (kgmole/h)	2.209	2.209	0.0000	
Mass Flow (kg/h)	51.72	51.72	0.0000	
Std Ideal Liq Vol Flow (m3/h)	0.1113	0.1113	0.0000	
Molar Enthalpy (kJ/kgmole)	1.354e+004	1.354e+004	-2.336e+004	
Mass Enthalpy (kJ/kg)	578.0	578.0	-877.3	
Molar Entropy (kJ/kgmole-C)	220.6	220.6	94.51	
Mass Entropy (kJ/kg-C)	9.423	9.423	3.549	
Heat Flow (kJ/h)	2.990e+004	2.990e+004	0.0000	
Molar Density (kgmole/m3)	0.2283	0.2283	39.91	
Mass Density (kg/m3)	5.345	5.345	1063	
Std Ideal Liq Mass Density (kg/m3)	464.9	464.9	981.0	
Liq Mass Density @Std Cond (kg/m3)		•••	1078	
Molar Heat Capacity (kJ/kgmole-C)	38.91	38.91	94.53	
Mass Heat Capacity (kJ/kg-C)	1.662	1.662	3.550	
Thermal Conductivity (VVIm-K)	2.976e-002	2.976e-002	0.4621	
Viscosity (cP)	1.318e-002	1.318e-002	1.569	
Surface Tension (dyne/cm)			55.34	1
Molecular Weight	23.42	23.42	26.63	
Z Factor	0.9822	0.9822	5.617e-003	

RICH TO L/R

	Overall	Vapour Phase	Aqueous Phase	
Vapour/Phase Fraction	0.0000	0.0000	1.0000	
Temperature: (C)	59.74	59.74	59.74	
Pressure: (kPa)	620.5	620.5	620.5	
Molar Flow (kgmole/h)	1735	0.0000	1735	
Mass Flow (kg/h)	4.621e+004	0.0000	4.621e+004	
Std Ideal Liq Vol Flow (m3/h)	47.11	0.0000	47.11	
Molar Enthalpy (kJ/kgmole)	-2.336e+004	1.354e+004	-2.336e+004	
Mass Enthalpy (kJ/kg)	-877.3	578.0	-877.3	
Molar Entropy (kJ/kgmole-C)	94.51	220.6	94.51	
Mass Entropy (kJ/kg-C)	3.549	9.423	3.549	
Heat Flow (kJ/h)	-4.054e+007	0.0000	-4.054e+007	
Molar Density (kgmole/m3)	39.91	0.2283	39.91	
Mass Density (kg/m3)	1063	5.345	1063	
Std Ideal Lig Mass Density (kg/m3)	981.0	464.9	981.0	
Liq Mass Density @Std Cond (kg/m3)	1078		1078	
Molar Heat Capacity (kJ/kgmole-C)	94.53	38.91	94.53	
Mass Heat Capacity (kJ/kg-C)	3.550	1.662	3.550	·
Thermal Conductivity (VV/m-K)	0.4621	2.976e-002	0.4621	
Viscosity (cP)	1.569	1.318e-002	1.569	
Surface Tension (dyne/cm)	55.34		55.34	
Molecular Weight	26.63	23.42	26.63	
Z Factor	5.617e-003	0.9822	5.617e-003	

Inlet Stream

		Rich DIPA to Flash Tank	
Vapour Fraction		0.0013	
Temperature	(C)	59.74	
Pressure	(kPa)	620.5 *	
Molar Flow	(kamole/h)	1738	
MassFlow	(kg/h)	4.627e+004	
Std Ideal Liq Vol Flow	(m3/h)	47.22	
HeatFlow	(kJ/h)	-4.051e+007	

Outlet Stream

		RICH TO LIR	FLASH VAP	
Vapour Fraction		0.0000	1.0000	
Temperature	(C)	59.74	59.74	

Case Name:	E: PRAKASH MUKHOPADHYAY DIPA.HSC
Unit Set:	SI
Date/Time:	Mon May 11 08:47:16 2009

Separator: FLASH TK (continued)

		RICH TO LIR	FLASH VAP	
Pressure	(kPa)	620.5	620.5	
Molar Flow	(kgmole/h)	1735	2.209	
MassFlow	(kq/h)	4.621e+004	51.72	
Std Ideal Liq Vol Flow	(m3/h)	47.11	0.1113	
HeatFlow	(kJ/h)	-4.054e+007	2.990e+004	

Case Name:	E: PRAKASH MUKHOPADHYAY DIPA. HSC
Unit Set:	SI
Date/Time:	Mon May 11 08:53:10 2009

Heat Exchanger: L/R Exchanger

	Heat Ex	chan	iger: L/	R Exc	hanger						
					CONNE	CTIONS					
		Tube	Side					Shell	Side		
	Inlet		T	Outlet			Inlet			Outlet	
Name		TOLIR	Name	- Cullor	REGEN FEED	Name		GEN BTTMS	Name		
From Op.		arator	To Op.	Distillation	REGENERATOR	From Op.	DistillationEG		To Op		Mixure
Temp		9.74 C	Temp		93.33 C *	Temp		124.76 C	Temp		88.02 C
-	PARAMETERS										
				E	xchanger Des	ign (End Po	oint)				
Tube Side De	ttaP:		68.95 kPa *	Shell Side	: DeltaP:		68.95 kPa *	Passes:		***	
UA:			+005 kJ/C-h	Tolerance	<u>:</u>		1,0000e-04 *				
		Tube Si	de Data					Shell Si	de Data		
Heat Transfe						Heat Transfe			_		
Tube Pressu	e Drop				68.95 kPa *	Shell Pressur	re Drop				68.95 kPa *
Fouling				0.00	0000 C-h-m2/kJ *	Fouling				0.000	000 C-h-m2/kJ *
Tube Length					6.00 m *	Shell Passes					1
Tube O.D.					20.00 mm *	Shell Series	· · · · · · · · · · · · · · · · · · ·				1.
Tube Thickne	ss				2.0000 mm	Shell Parallel					1 *
Tube Pitch					50.0000 mm *	Baffle Type	A		-		Single
Orientation					Horizontal	Baffle Cut(%		·			20.00 *
Passes Per S					1 *	Baffle Orient	ation				Horizontal
Tubes Per Sh				T-11	160 *	Spacing					800.0000 mm *
Layout Angle				Irlangula	ar (30 degrees)	Diameter					739.0488 mm *
TEMA Type					AEL	Area					60.32 m2
· · · · · · · · · · · · · · · · · · ·						ECS					
		<u> </u>	Specified Valu		Current			elative Error		Active	Estimate
E-100 H	eat Balance	<u> </u>	0.0	0000 kJ/h		2.456e-009 kJ/h		6.821	e-013	On	Off
E-	00 UA	<u> </u>			2.09	90e+005 kJ/C-h				On	Off
					Detailed Sp		•				
					E-100 Hea						
	Type: Duty				Pass: 1				Spec Va	lue: 0.0000 kJ/h	
	T 110				E-100				V-	han	
	Type: UA				Pass:	Overall			spec va	lue:	
					User Va	riables					
					RAT	ING					
						ing					
					Overal						
				T. 4 - D	Configu	uration					
# of Shells in			1*		ses per Shell		1 *	Elevation (Ba		- D	0.0000 m
# of Shells in			1*	Exchange	Orientation		Horizontal	First Tube Po	ISS FION		Counter
	TEMA Ty	pe:			A					<u>L</u>	
Ch-III IT C	,,		Oursell II	C Is Ids = 2 /	Calculated			Chall 2.2	72 m3	LIT Avenue Cha	" 00.00 0
Shell HT Coe				6 kJ/h-m2-C		68.95 kPa *	Shell Vol per			HT Area per She	ll 60.32 m2
Tube HT Coe	<u>II</u>	\	Overall UA)e	+005 kJ/C-r		68.95 kPa *	Tube Vol per	Stiell 0.13	30 m3	L	
						Data					
Chall Diamata	· · · · · · · · · · · · · · · · · · ·		720.0 1	Tubo Dito	Shell and Ti	elbriud Bau	50.00 1	Shall Fauli-		0.00	200 C b - 24 1 2
# of Tubes p			739.0 mm * 160 *	Tube Pitch	n rout Angle		50.00 mm *	Shell Fouling		0.00 (ular (30 degrees)	000 C-h-m2/kJ *
# OI TUDES P	y 3161		160 "	1 COO Lay	Shell B	Poffice			mang	Juidi (30 degrees)	
Shell Baffle 1	vne	Single	Shell Baffle	Orientation	Horizontal	Baffle Cut (%	(Area)	20.00 *	Reffle	Spacing	800.0 *
Sika Daine	,,,,	July 10	_ Siles Daille (JI ICI LIQUOI I	Tube		onica)	20.00	Danie	- Share is	800.0 mm *
					Dimen						
OD	20	.00 mm *	ID		16.00 mm *			2.000 mm	Tuhe !	enoth	6.000 m *
OD 20.00 mm * ID 16.00 mm * Tube Thickness 2.000 mm Tube Length 6.000 m * Tube Properties											
Tube Fouling											
, 1 0 4 11 19											
1					PROPE	RTIES					

Case Name:	E: PRAKASH MUKHOPADHYAY DIPA.HSC
Unit Set:	SI
Date/Time:	Mon May 11 08:53:10 2009

Heat Exchanger: L/R Exchanger (continued)

RICH TO L/R

NCO TO LA								
	Overali	Vapour Phase	Aqueous Phase					
Vapour/Phase Fraction	0.0000	0.0000	1.0000					
Temperature: (C)	59.74	59.74	59.74					
Pressure: (kPa)	620.5	620.5	620.5					
Molar Flow (kgmole/h)	1735	0.0000	1735					
Mass Flow (kg/h)	4.621e+004	0.0000	4.621e+004					
Std Ideal Liq Vol Flow (m3/h)	47.11	0.0000	47.11					
Molar Enthalpy (kJ/kgmole)	-2.336e+004	1.354e+004	-2.336e+004					
Mass Enthalpy (kJ/kg)	-877.3	578.0	-877.3					
Molar Entropy (kJ/kgmole-C)	94.51	220.6	94.51					
Mass Entropy (kJ/kg-C)	3.549	9.423	3.549					
Heat Flow (kJ/h)	-4.054e+007	0.0000	-4.054e+007					
Molar Density (kgmole/m3)	39.91	0.2283	39.91					
Mass Density (kg/m3)	1063	5.345	1063_					
Std Ideal Liq Mass Density (kg/m3)	981.0	464.9	981.0					
Liq Mass Density @Std Cond (kg/m3)	1078		1078					
Molar Heat Capacity (kJ/kgmole-C)	94.53	38.91	94.53					
Mass Heat Capacity (kJ/kg-C)	3.550	1.662	3.550					
Thermal Conductivity (W/m-K)	0.4621	2.976e-002	0.4621					
Viscosity (cP)	1,569	1.318e-002	1.569_					
Surface Tension (dyne/cm)	55.34		55.34					
Molecular Weight	26.63	23.42	26.63					
Z Factor	5.617e-003	0.9822	5.617e-003					

REGEN FEED

		Overall	Vapour Phase	Aqueous Phase	
Vapour/Phase Fraction		0.0082	0.0082	0.9918	
Temperature:	(C)	93.33 *	93.33	93.33	
Pressure: (I	(Pa)	551.6	551.6	551.6	
Molar Flow (kgmol	e/n)	1735	14.22	1721	
Mass Flow (k	g/h)	4.621e+004	450.9	4.576e+004	
Std Ideal Liq Vol Flow (m	3/h)	47.11	0.5660	46.54	
Molar Enthalpy (kJ/kgm	ole)	-1.977e+004	1.230e+004	-2.003e+004	
Mass Enthalpy (kJ	/kg)	-742.4	387.6	-753.5	
Molar Entropy (kJ/kgmole	e-C)	100.3	221.1	99.33	
Mass Entropy (kJ/kg	3-C)	3.768	6.972	3.736	
Heat Flow (k	J/h)	-3.431e+007	1.748e+005	-3.448e+007	
Molar Density (kgmole:	m3)	14.42	0.1860	39.22	
Mass Density (kg	m3)	384.1	5.899	1043	
Std Ideal Liq Mass Density (kg.	m3)	981.0	796.6	983.2	
Liq Mass Density @Std Cond (kg.	m3)	1078	1055	1078	
Molar Heat Capacity (kJ/kgmol	e-C)	99.28	35.14	99.81	
Mass Heat Capacity (kJ/kg	g-C)	3.728	1.108	3.754	
Thermal Conductivity (W/r	n-K)		2.290e-002	0.4850	
Viscosity	(cP)		1.548e-002	0.7652	
Surface Tension (dyne.	(cm)	49.78		49.78	
Molecular Weight		26.63	31.72	26.59	
Z Factor			0.9733	4.616e-003	
·			DECEN DITTUE		

REGEN BTTMS

		Overall	Aqueous Phase	
Vapour/Phase Fraction		0.0000	1.0000	
Temperature:	(C)	124.8	124.8	
Pressure:	(kPa)	217.2	217.2	
Molar Flow	(kamole/h)	1612	1612	
Mass Flow	(kg/h)	4.256e+004	4.256e+004	
Std Ideal Liq Vol Flow	(m3/h)	42.63	42.63	
Molar Enthalpy	(kJ/kamole)	-1.610e+004	-1.610e+004	
Mass Enthalpy	(kJ/kg)	-609.8	-609.8	
Molar Entropy	(kJ/kgmole-C)	108.1	108.1	
Mass Entropy	(kJ/kg-C)	4.097	4.097	
Heat Flow	(kJ/h)	-2.595e+007	-2.595e+007	
Molar Density	(kgmole/m3)	36.50	36.50	

Case Name:	E:PRAKASH MUKHOPADHYAY DIPA.HSC
Unit Set:	SI
Date/Time:	Mon May 11 08:53:10 2009

Heat Exchanger: L/R Exchanger (continued)

REGEN BTTMS							
	Overall	Aqueous Phase					
Mass Density (kg/m3)	963.5	963.5					
Std Ideal Liq Mass Density (kg/m3)	998.3	998.3					
Liq Mass Density @Std Cond (kg/m3)	1023	1023					
Molar Heat Capacity (kJ/kgmole-C)	108.1	108.1					
Mass Heat Capacity (kJ/kg-C)	4.097	4.097					
Thermal Conductivity (W/m-K)	0.4927	0.4927					
Viscosity (cP)	0.4512	0.4512					
Surface Tension (dyne/cm)	44.47	44.47					
Molecular Weight	26.40	26.40					
Z Factor	1.799e-003	1.799e-003					

	Overall	Aqueous Phase	
Vapour/Phase Fraction	0.0000	1.0000	
Temperature: (C)	88.02	88.02	
Pressure: (kPa)	148.2	148.2	
Molar Flow (kgmole/h)	1612	1612	
Mass Flow (kg/h)	4.256e+004	4.256e+004	
Std Ideal Liq Vol Flow (m3/h)	42.63	42.63	
Molar Enthalpy (kJ/kgmole)	-1.996e+004	-1.996e+004	
Mass Enthalpy (kJ/kg)	-756.3	-756.3	
Molar Entropy (kJ/kgmole-C)	102.4	102.4	
Mass Entropy (kJ/kq-C)	3.881	3.881	
Heat Flow (kJ/h)	-3.219e+007	-3.219e+007	
Molar Density (kgmole/m3)	37.54	37.54	
Mass Density (kg/m3)	990.9	990.9	
Std Ideal Liq Mass Density (kg/m3)	998.3	998.3	
Liq Mass Density @Std Cond (kg/m3)	1023	1023	
Molar Heat Capacity (kJ/kgmole-C)	102.4	102.4	
Mass Heat Capacity (kJ/kg-C)	3.881	3.881	
Thermal Conductivity (W/m-K)	0.4798	0.4798	
Viscosity (cP)	0.8113	0.8113	
Surface Tension (dyne/cm)	50.53	50.53	
Molecular Weight	26.40	26.40	
Z Factor	1.315e-003	1.315e-003	

Stream Properties

	RICH TO LIR	REGEN FEED	REGEN BTTMS	LEAN FROM LAR
Vapour Fraction	0.0000	0.0082	0.0000	0.0000
Temperature	59.74	93.33 *	124.8	88.02
Pressure	620.5	551.6	217.2	148.2
Enthalpy	-2.336e+004	-1.977e+004	-1.610e+004	-1.996e+004
Molar Flow	1735	1735	1612	1612
MassFlow	4.621e+004	4.621e+004	4.256e+004	4.256e+004
Std Ideal Liq Vol Flow	47.11	47.11	42.63	42.63
HeatFlow	-4.054e+007	-3.431e+007	-2.595e+007	-3.219e+007

DETAILS

Overall/Detailed Performance

Duty:	6.235e+06 kJ/h	UA:	2.090e+05 kJ/C-h	UA Curv. Error:	0.00e-01 kJ/C-h	Ft Factor:	1
Heat Leak:	0.000e-01 kJ/h	Min. Approach:	28.28 C	Hot Pinch Temp:	88.02 C	Uncorrected Lmtd:	29.83 C
Heat Loss:	0.000e-01 kJ/h	Lmtd:	29.83 C	Cold Pinch Temp:	59.74 C		

TABLES

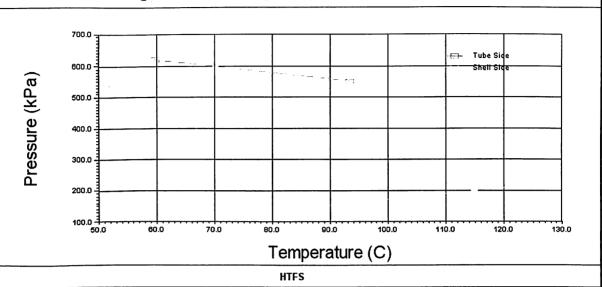
Shell Side - Overall Phase

Temperature (C)	Pressure (kPa)	Heat Flow (kJ/h)	Enthelpy (kJ/kgmole)	Molar Vap Frac	Mass Vap Frac
88.02	148.24	0.00	-19964.69	0.0000	0.0000
124.76	217.18	6235243.72	-16097.15	0.0000	0.0000

Case Name:	E: PRAKASH MUKHOPADHYAY DIPA HSC
Unit Set:	SI
Date/Time:	Mon May 11 08:53:10 2009

	•	_	(continued)		
		Shell Side - V	apour Phase		
Mass Flow (kg/h)	Molecular Weight	Density (kg/m3)	Mass Specific Heat (kJ/kg-C)	Viscosity (cP)	Thermal Conductivity (VV/m-K)

•••	***	Shell Side - Ligi	nt Liquid Phase		
			•	7 1 10 1 11 7 1	
Mass Flow (kg/h)	Density (kg/m3)	Mass Specific Heat (kJ/kg-C)	Viscosity (cP)	Thermal Conductivity (VV/m-K)	Surface Tension (dyne/cm)
					· · · · · · · · · · · · · · · · · · ·
		Shell Side - Hear	vy Liquid Phase		
Mass Flow (kg/h)	Density (kg/m3)	Mass Specific Heat (kJ/kg-C)	Viscosity (cP)	Thermal Conductivity (VV/m-K)	Surface Tension (dyne/cm)
42560.25	37.54	3.88	0.81		
42560.25	36.50	4.10	0.45		
		Tube Side - 0	verall Phase		
Temperature (C)	Pressure (kPa)	Heat Flow (kJ/h)	Enthalpy (kJ/kgmole)	Molar Vap Frac	Mass Vap Frac
59.74	620.53	0.00	-23361.31	0.0000	0.00
93.33	551.58	6235243.72	-19768.47	0.0082	0.00
		Tube Side - V	apour Phase		
Mass Flow (kg/h)	Molecular Weight	Density (kg/m3)	Mass Specific Heat (kJ/kg-C)	Viscosity (cP)	Thermal Conductivit
0.00	23.42	0.23	1.66	0.01	
450.90	31.72	0.19	1.11	0.02	
	_	Tube Side - Ligi	ht Liquid Phase		
Mass Flow (kg/h)	Density (kg/m3)	Mass Specific Heat (kJ/kg-C)	Viscosity (cP)	Thermal Conductivity (VV/m-K)	Surface Tension (dyne/cm)
(kg/l)	(kg/lib)	(nong-c)	(CF)	(44/11-17)	(d) (d)
	i				
		Tube Side - Hear			
Mass Flow	Density	Tube Side - Hear	vy Liquid Phase Viscosity	Thermal Conductivity	Surface Tension
		Tube Side - Hear	vy Liquid Phase		Surface Tension (dyne/cm)



Case Name: E:\PRAKASH MUKHOPADHYAY -- DIPA.HSC

Unit Set: SI

Date/Time: Mon May 11 08:53:10 2009

 Case Name:
 E:PRAKASH MUKHOPADHYAY -- DIPA.HSC

 Unit Set:
 SI

 Date/Time:
 Mon May 11 09:01:43 2009

			Distillation:	REGE	VER	ATOR	@Main		•		
			co	NNECTIONS		,					
				Inlet Stream							
STREAM	NAME		Stage				FROM L	INIT OPERA	TION		
RBLR Q		Reboi									
REGEN FEED		4Ma		\. 41-4 CV	Heat E	Exchanger				L/R Ex	changer
STREAM N	NAME		Stage	Outlet Stream			TOUN	IIT OPERAT	ION		
COND Q	VAIVIE	Conde					1001	III OI LIKAI	1014		
ACID GAS		Conde									
REGEN BTTMS		Reboi	ler		Heat E	Exchanger				L/R Ex	changer
				MONITOR							
	T 0 16-43	/alua	Specif Current Value	fications Summa	ary	Wt. Tol.	Abs.	[a]	0 odino	Estimate	Lines
Reflux Ratio	Specified \	0.5000 *	0.8422	VVt. Error 0.684	15	1.000e-002 *		100e-002 *	Active Off	On	Used Off
Ovhd Vap Rate	99.61	kgmole/h *	123.3 kgmole/h	0.237		1.000e-002 *		kgmole/h *	Off	On	Off
Reboiler Duty		007 kJ/h *	1.431e+007 kJ/h	-0.120		1.000e-002 *		0.00 kJ/h *	On	On	On
T Top		82.00 C *	82.00 C	7.340e-00	08 '	1.000e-002 *		1.000 C *	On	On	On
•				SPECS							
A HINE CO.			Column Sp	ecification Para	meters						
			F	Reflux Ratio							
Fixed / Ranged:	Fixed	Primary / Al	ternate: Prim	ary Lower	Bound:	:		Upper B	ound:		
Stage:	Condenser	Flow Basis		olar Liquid	Specific	cation:					
			Ov	hd Vap Rate							
Fixed / Ranged:	Fixed	Primary / Al	ternate: Prim	ary Lower	Bound:	:		Upper B	ound:		
Stream:	ACID GAS	Flow Basis		olar				L			
			R	eboiler Duty							
Fixed / Ranged:	Fixed	Primary / Al	ternate: Prim	ary Lower	Bound:			Upper Bo	per Bound:		
Energy Stream:	RBLR Q										
Fined (Decord	Fixed	Drim ou . / 01	ternate: Prim	Т Тор	Davis			Llaner B	a undi		
Fixed / Ranged: Stage:	Condenser	Primary / Al	terriate. Friiii	ary Luvver	Bound:			Upper Bo	ouriu.		
			SI	UBCOOLING							
To the same of			Condenser								
Degrees of Subcooling			Condonico								
Subcool to											
			Us	er Variables							
				PROFILES							
	•			eral Parameters		Name of the last					
Sub-Flow Sheet:			REGENERATOR (CO	L2) Numbe	r of Sta	ages:					18 '
				file Estimates	S		Liausial			4 \/	-
			Tempe (0	rature C)			Liquid nole/h)		(i	et Vapour kgmole <i>l</i> h)	
		Condens	ser	82.00	0		10	03.8			123.3
		1Main		105.6				08.6			227.1
		2_Main	CONTRACTOR OF THE PARTY OF THE	106.1				08.7 08.2			231.9
MARKET THE STATE OF THE STATE O		3Main		106.		2000		000			232.0
		5_Main		119.			4	949			280.4
		6_Main	15	122				962			336.5
Total Control of the		7_Main	TS	122			1	965			349.6
	and the second of the second of the second							007			
		8_Main	TS	123.	2		1	967			353.2
		8_Main 9_Main	78 T S	123. 123.	3		1	968			354.7
		8_Main	TS TS	123.	2 3 5		1				

Case Name:	E: PRAKASH MUKHOPADHYAY DIPA.HSC
Unit Set:	SI
Date/Time:	Mon May 11 09:01:43 2009

Distillation: REGENERATOR @Main (continued)

Profile Estimates							
	Temperature (C)	Net Liquid (kgmole/h)	Net Vapour (kgmole/h)				
13_Main TS	123.8	1970	357.4				
14_Main TS	123.9	1971	357.9				
15_Main TS	124.0	1971	358.4				
16_Main TS	124.1	1972	358.9				
17_Main TS	124.2	1972	359.4				
18_Main TS	124.3	1972	359.8				
Reboiler	124.8	1612	360.2				

EFFICIENCIES

			Ctore Efficiencies			
01	1 5 # 546-i-man	Nitrogen	Stage Efficiencies CO2	H2S	Methane	Ethane_
Stages	Overall Efficiency 1.000	1.000	1.000	1.000	1.000	1.000
Condenser	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
1_Main TS						
2_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000 1.000	1.000
3_Main TS	1.000	1.000	0.1500 *	0.8000 *		1.000
4_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
5_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
6_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
7_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
8_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
9_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
10_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
11_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
12_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
13_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
14_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
15_Main TS	1.000	1.000	0.1500 *	0.8000 ×	1.000	1.000
16_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
17_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
18_Main TS	1.000	1.000	0.1500 *	0.8000 *	1.000	1.000
Reboiler	1.000	1.000	1.000	1.000	1.000	1.000
Stages	Overall Efficiency	Propane	i-Butane	n-Butane	i-Pentane	n-Pentane
Condenser	1.000	1.000	1.000	1.000	1.000	1.000
1_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
2_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
3_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
4_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
5_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
6_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
7_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
8_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
9_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
10_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
11_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
12_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
13_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
14_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
15 Main TS	1.000	1.000	1.000	1.000	1.000	1.000
16_Main TS	1,000	1.000	1.000	1.000	1.000	1.000
17_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
18_Main TS	1.000	1.000	1.000	1.000	1.000	1.000
Reboiler	1.000	1.000	1.000	1.000	1.000	1.000
Stages	Overall Efficiency	n-Hexane	n-Heptane	H2O	DisoPAmine	
Condenser	1.000	1.000	1.000	1.000	1.000	
1_Main TS	1.000	1.000	1.000	1.000	1.000	
2_Main TS	1.000	1.000	1.000	1.000	1.000	
3_Main TS	1.000	1.000	1.000	1.000	1.000	
4_Main TS	1.000	1.000	1.000	1.000	1.000	
5_Main TS	1.000	1.000	1.000	1.000	1.000	
6_Main TS	1.000	1.000	1.000	1.000	1.000	
7_Main TS	1.000	1.000	1.000	1.000	1.000	
	1,000			1.000	1.000	

Case Name:	E:PRAKASH MUKHOPADHYAY DIPA.HSC
Unit Set:	SI
Date/Time:	Mon May 11 09:01:43 2009

		Distillati	ion: R	EGENE	RATOR	@Maiı	n (continued)	
				liciencies				
Stages	Overall Efficiency	n-Hexane	n-Heptane		H2O		IsoPAmine	
9Main TS	1.000	1.000		1.000		1.000	1.000	
10_Main TS	1.000	1.000		1.000		1.000	1.000	
11_Main TS	1.000	1.000		1.000		1.000	1.000	
12_Main TS	1.000	1.000		1.000		1.000	1.000	
13_Main TS	1.000	1.000	l	1.000		1.000	1.000	
14_Main TS	1.000	1.000		1.000		1.000	1.000	
15Main TS	1.000	1.000		1.000		1.000	1.000	
16_Main TS	1.000	1.000		1.000		1.000	1.000	
17_Main TS	1.000	1.000		1.000		1.000	1.000	
18_Main TS	1.000	1.000		1.000		1.000	1.000	
Reboiler	1.000	1.000		1.000		1.000	1.000	
			SOL	.VER				
		Column Solving	Algorithm:	HYSIM Inside				
	Solving Option	ıs		L			on Parameters	
Maximum Iterations:			10000	Accelerate	K Value & H Mo	del Paramete	ers:	Of
Equilibrium Error Tole	erance:		1.000e-05	4				
Heat/Spec Error Tole	erance:	5	.000e-004					
Save Solutions as In			On	1				
Super Critical Handli	ng Model:		Simple K					
Trace Level:			Low	1				
Init from Ideal K's:			Off			Damping	Parameters	
	nitial Estimate Generator	Parameters		Azeotrope	Check			01
Iterative IEG (Good f	or Chemicals):		Off		ping Factor:			
			Tray S	ections				
Tray Section		Main TS						
Tray Diameter	(m)							
Weir Height	(m) (m)		*					
Weir Length Tray Space	(m)							
Tray Volume	(m3)							
Disable Heat Loss C		No						
Heat Model	diodidibilis	None						
Rating Calculations		No						
Tray Hold Up	(m3)							
			Ves	sels				
Vessel		Condenser		Rebo	iler			
Diameter	(m)	1.193		1.19				
Length	(m)	1.789		1.78				
Volume	(m3)			2.00				
Orientation		Horizontal		Horizo				
Vessel has a Boot		No		No				
Boot Diameter	(m)							
Boot Length	(m)							
Hold Up	(m3)			1.00				
			quipment Ir	n Column Flo				
			Pressu	re Profile				
				re (kPa)			Pressure Drop (kPa)
	Condenser			.6 kPa		ļ	17.24 kPa	
	1 Main TS			.8 kPa		 	0.6084 kPa	
	2_Main TS			5 kPa		ļ	0.6084 kPa	
3_Main TS			208	1 kPa		1	0.6084 kPa	
	4 Main TS 5 Main TS		208	7 kPa 3 kPa			0.6084 kPa 0.6084 kPa	

TEAM LND Calgary, Alberta CANADA Case Name: E: YPRAKASH MUKHOPADHYAY -- DIPA. HSC Unit Set:

Mon May 11 09:01:43 2009 Date/Time: Distillation: REGENERATOR @Main (continued) 209.9 kPa 6_Main TS 7_Main TS 210.5 kPa 0.6084 kPa 211.1 kPa 0.6084 kPa 8_Main TS 0.6084 kPa 9_Main TS 211.7 kPa 10_Main TS 212.3 kPa 0.6084 kPa 212.9 kPa 0.6084 kPa 11_Main TS 213.5 kPa 0.6084 kPa 12_Main TS 214.1 kPa 0.6084 kPa 13__Main TS 0.6084 kPa 14_Main TS 214.8 kPa 215.4 kPa 0.6084 kPa 15 Main TS 16_Main TS 216.0 kPa 0.6084 kPa 216.6 kPa 0.6084 kPa 17 Main TS 217.2 kPa 18_Main TS 217.2 kPa 0.0000 kPa Reboiler **Pressure Solving Options** 1 000e-004 * Pressure Drop Tolerance 1 000e-004 * Demoing Factor 1.000 * Max Press iterations 100 * Pressure Toloropoo

Pressure Tolerance 1.000e-004 * Pr	essure Drop Tolerance	1.000e-004 * Damp	oing Factor	1.000 *	Max Press Iterations	100 *	
		PROPERTIES					
Properties: REGEN FEED							
	Overall	Vapour Phase	Aqueous Phase				
Vapour/Phase Fraction	0.0082	0.0082	0.9918				
Temperature: (C)	93.33	93.33	93.33				
Pressure: (kPa)	551.6	551.6	551.6				
Molar Flow (kgmole/h)	1735	14.22	1721				
Mass Flow (kg/h)	4.621e+004	450.9	4.576e+004				
Std Ideal Liq Vol Flow (m3/h)	47.11	0.5660	46.54				
Molar Enthalpy (kJ/kgmole)	-1.977e+004	1.230e+004	-2.003e+004				
Mass Enthalpy (kJ/kg)	-742.4	387.6	-753.5				
Molar Entropy (kJ/kgmole-C)	100.3	221.1	99.33				
Mass Entropy (kJ/kg-C)	3.768	6.972	3.736				
Heat Flow (kJ/h)	-3.431e+007	1.748e+005	-3.448e+007				
Molar Density (kgmole/m3)	14.42	0.1860	39.22				
Mass Density (kg/m3)	384.1	5.899	1043				
Std Ideal Liq Mass Density (kg/m3)	981.0	796.6	983.2				
Liq Mass Density @Std Cond (kg/m3)	1078	1055	1078				
Molar Heat Capacity (kJ/kgmole-C)	99.28	35.14	99.81				
Mass Heat Capacity (kJ/kg-C)	3.728	1.108	3.754	L			
Thermal Conductivity (VV/m-K)		2.290e-002	0.4850				
Viscosity (cP)		1.548e-002	0.7652				
Surface Tension (dyne/cm)	49.78		49.78				
Molecular Weight	26.63	31.72	26.59				
Z Factor	 _	0.9733	4.616e-003				
		roperties: REGEN B					
	Overall	Vapour Phase	Liquid Phase				
Vapour/Phase Fraction	0.0000	0.0000	1.0000				
Temperature: (C)	124.8	124.8	124.8				
Pressure: (kPa)	217.2	217.2	217.2				
Molar Flow (kgmole/h)	1612	0.0000	1612				
Mass Flow (kg/h)	4.256e+004	0.0000	4.256e+004	ļ			
Std Ideal Liq Vol Flow (m3/h)	42.63	0.0000	42.63				
Molar Enthalpy (kJ/kgmole)	-1.610e+004	1.332e+004	-1.610e+004				
Mass Enthalpy (kJ/kg)	-609.8	737.4	-609.8				
Molar Entropy (kJ/kgmole-C)	108.1	215.7	108.1	 			
Mass Entropy (kJ/kg-C)	4.097	11.94	4.097				
Heat Flow (kJ/h)	-2.595e+007	0.0000	-2.595e+007	 			
Molar Density (kamole/m3)	36.50	6.669e-002	36.50	 			
Mass Density (kg/m3)	963.5	1.205	963.5	 			
Std Ideal Liq Mass Density (kg/m3) Lia Mass Density @Std Cond (kg/m3)	998.3	997.7	998.3	 			
		1055	1023	 			
	108.1	34.40	108.1				
Mass Heat Capacity (kJ/kg-C) Thermal Conductivity (W/m-K)	4.097	1.905	4.097 0.4927	 			
	0.4927	3.533e-002	0.4927	 			
	0.4963	1.408e-002	0.4963	 			
Surface Tension (dyne/cm)	0.5174		U.51/4				

Case Name:	E: PRAKASH MUKHOPADHYAY — DIPA.HSC
Unit Set:	SI
Date/Time:	Mon May 11 09:01:43 2009

Distillation: REGENERATOR @Main (continued)

Properties: REGEN BTTMS								
	Overall	Vapour Phase	Liquid Phase					
Molecular Weight	26.40	18.06	26.40					
Z Factor	1.799e-003	0.9843	1.799e-003					
	P	roperties: ACID GAS						
	Overall	Vapour Phase						
Vapour/Phase Fraction	1.0000	1.0000						
Temperature: (C)	82.00	82.00						
Pressure: (kPa)	189.6	189.6						
Molar Flow (kgmole/h)	123.3	123.3						
Mass Flow (kg/h)	3654	3654						
Std Ideal Liq Vol Flow (m3/h)	4.476	4.476						
Molar Enthalpy (kJ/kgmole)	1.186e+004	1.186e+004						
Mass Enthalpy (kJ/kg)	400.0	400.0						
Molar Entropy (kJ/kgmole-C)	228.2	228.2						
Mass Entropy (kJ/kg-C)	7.698	7.698						
Heat Flow (kJ/h)	1.462e+006	1.462e+006						
Molar Density (kgmole/m3)	6.492e-002	6.492e-002						
Mass Density (kg/m3)	1.924	1.924						
Std Ideal Liq Mass Density (kg/m3)	816.4	816.4						
Liq Mass Density @Std Cond (kg/m3)	998.6	998.6						
Molar Heat Capacity (kJ/kgmole-C)	34.69	34.69						
Mass Heat Capacity (kJ/kg-C)	1.170	1.170						
Thermal Conductivity (W/m-K)	2.338e-002	2.338e-002						
Viscosity (cP)	1.476e-002	1.476e-002						
Surface Tension (dyne/cm)								
Molecular Weight	29.64	29.64						
Z Factor	0.9891	0.9891		<u> </u>				

SUMMARY

Flow Basis:		Molar	The composition option is selected			
		Feed Con	nposition			
	REGEN FEED					
Flow Rate (kgmole/h)	1.735465e+03					
Nitrogen	0.0000					
CO2	0.0000					
H2S	0.0517					
. Methane	0.0001					
Ethane	0.0000					
Propane	0.0000					
i-Butane	0.0000					
n-Butane	0.0000					
i-Pentane	0.0000					
n-Pentane	0.0000					
n-Hexane	0.0000					
n-Heptane	0.0000					
H2O	0.8807					
DisoPAmine	0.0676					
Flow Basis:		Molar	The	e composition option is select	ed	
		Feed	lows			
	REGEN FEED					
Flow Rate (kgmole/h)	1.735465e+03					
	<u> </u>					
Nitrogen (kgmole/h)	0.0019					
CO2 (kgmole/h)	0.0000					
H2S (kgmole/h)	89.6483					
Methane (kgmole/h)	0.0972					
Ethane (kgmole/h)	0.0079					
Propane (kgmole/h)	0.0011					
i-Butane (kgmole/h)	0.0000					
n-Butane (kgmole/h)	0.0000					
i-Pentane (kgmole/h)	0.0000					
n-Pentane (kgmole/h)	0.0000					
n-Hexane (kamole/h)	0.0000					

1

TEAM LND Calgary, Alberta CANADA
 Case Name:
 E:VPRAKASH MUKHOPADHYAY - DIPA.HSC

 Unit Set:
 SI

 Date/Time:
 Mon May 11 09:01:43 2009

Distillation: REGENERATOR @Main (continued)

		Distillation: R	EGENERATOR	@Main (contin	ued)
		SUMP	WARY		
	REGEN FEED				
n-Heptane (kgmole/h)	0.0000				
H2O (kamole/h)	1.528408e+03		MARK. 88-9 10 PM		
DisoPAmine (kgmole/h)	117,2999				
		Prod			
Flow Basis:		Molar Product Co		e composition option is select	ed
	ACID GAS	REGEN BTTMS	mpositions		
Flow Rate (kamole/h)	123.2689	1.612196e+03			
FION I Rate (Adminishr)	123.2003				
Nitrogen	0.0000	0.0000			
CO2	0.0000	0.0000			
H2S	0.7240	0.0002			
Methane	0.0008	0.0000			
Ethane	0.0001	0.0000			
Propane	0.0000	0.0000			
i-Butane	0.0000 0.0000	0.0000			
n-Butane	0.0000	0.0000			
i-Pentane n-Pentane	0.0000	0.0000			
n-Hexane	0.0000	0.0000			
n-Heptene	0.0000	0.0000			
H2O	0.2751	0.9270			
DisoPAmine	0.0000	0.0728			
Flow Basis:		Molar		e composition option is select	ed
			t Flows		
	ACID GAS	REGEN BTTMS		<u> </u>	
Flow Rate (kgmole/h)	123.2689 *	1.612196e+03 *			
Nitrogen (kgmole/h)	0.0019 *	0.0000 *			
	0.0010	0.0000			
CO2 (kgmole/h) H2S (kgmole/h)	0.0000 * 89.2516 *	0.0000 * 0.3968 *			
Methane (kgmole/h)	0.0972 *	0.0000 *			
Ethane (kgmole/h)	0.0079 *	0.0000 *			
Propane (kgmole/h)	0.0011 *	0.0000 *			
i-Butane (kgmole/h)	* 0.0000 *	0.0000 *			
n-Butane (kgmole/h)	0.0000 *	0.0000 *			
i-Pentane (kgmole/h)	0.0000 *	0.0000 *			
n-Pentane (kgmole/h) n-Hexane (kgmole/h)	0.0000 * 0.0000 *	0.0000 * 0.0000 *			
n-Heptane (kgmole/h)	0.0000	0.0000			
H2O (kgmole/h)	33.9091 *	1.494499e+03 *			
DisoPAmine (kgmole/h)	0.0000 *	117.2999 *	-		
Flow Basis:		Molar		e composition option is select	ed
			Recoveries		
	ACID GAS	REGEN BTTMS			
Flow Rate (kgmole/h)	123.2689	1.612196e+03			
Miltrogon (or)	100.0000	0.0000			
Nitrogen (%) CO2 (%)	83.9876	16.0124			
H2S (%)	99.5574	0.4426			
· Methane (%)	100.0000	0.0000			
Ethane (%)	100.0000	0.0000	The state of the s		
Propane (%)	100.0000	0.0000			
i-Butane (%)	100.0000	0.0000			_
n-Butane (%)	100.0000	0.0000			
i-Pentane (%)	100,0000	0.0000			
n-Pentane (%) n-Hexane (%)	100.0000 100.0000	0.0000 0.0000	THE RESERVE OF THE PERSON OF T		
n-Heptane (%)	100.0000	0.0000			
H2O (%)	2.2186	97.7814			
DisoPAmine (%)	0.0000	100.0000			

 Case Name:
 E:PRAKASH MUKHOPADHYAY -- DIPA.HSC

 Unit Set:
 SI

 Date/Time:
 Mon May 11 09:01:43 2009

Distillation: REGENERATOR @Main (continued)

				MN PROFILES									
0.8422	Reboil Ratio:		0.223	The F	lows O	ption is Selected	<u></u>	Flow B	lasis:		Molar		
			Column	Profiles Flows									
Temperature (0			Net L		Net \	/ap (kgmole/h)	Ne	et Feed (kgr	nole/h)				
82.00				103.8						123.			
106.1		THE RESERVE AND ADDRESS OF THE PARTY OF THE					_				-		
					ļ		-						
			-										
The same of the sa							-						
		AND PARKS OF TAXABLE PARKS											
			-				+						
							1-						
		****				356.3							
				1970		356.9							
123.8		a manner of the street of the service		1970		357.4							
123.9		214.8		1971		357.9							
124.0		215.4		1971		358.4							
124.1		216.0		1972		358.9							
124.2		216.6		1972		359.4							
124.3				1972		359.8					******		
124.8		217.2				360.2				161	2		
							4 11						
		()	7		9)		3 1	(gmole)	Н	eat Loss (kJ/	h)		
And the country of th							-	-	-				
Market and the first design of the same of													
ACCRECATE AND ADDRESS OF THE PARTY OF THE PA	***************************************												
Marie Committee													
	The second secon						THE RESIDENCE OF THE PERSON NAMED IN COLUMN 1						
NAMES OF STREET OF STREET								W. P. Williams J. Control Street		No. of the second second			
Charles and the second of the				COLUMN TO SERVICE AND ADDRESS OF THE PARTY O			-						
			THE PERSON NAMED IN COLUMN TWO	The first of the f		the last last to the party of the last last the last last last last last last last last		And the last to the second state of the second		THE RESERVE OF THE PARTY OF THE	-		
the state of the s	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN 2 IS NOT THE			THE RESERVE AND ADDRESS OF THE PARTY OF THE			THE STREET SHOWS THE REAL PROPERTY.	The same to be not come and the			-		
	THE RESERVE THE PERSON NAMED IN COLUMN												
	123.8			CALL STREET, SALE BOOK OF THE PARTY OF THE P		Commence of the last commence							
Market Control of the	123.9					1.328e+0							
S	124.0					1.328e+004							
S	124.1					To the contract of the contrac		1.328e+		AND ASSESSMENT OF PERSONS ASSESSMENT OF PERS			
S	124.2		-1	.799e+004						***			
S	124.3		-1	.798e+004		1.3296	+004						
	124.8		-1	.610e+004		1.332€	+004						
			FEEDS	PRODUCTS									
Stream	Type	Duty	(kJ/h)	State	Flov	vs (kgmol	e/h)	Enthalpy	(kJ/kgmc	ole) Temp	(C)		
COND Q	Energy		06 *								-		
ACID GAS	Draw			Vapour	123	3.3		1.186e+00	J4	" 82.00			
DECEN FEED	Facal Control			Missaul		25		4.077	104	5 00.00			
NEGENTEED	reea			iviixea	173	35		-1.9//e+U	104	93.33			
		-											

											-		
					-		-+						
											F-34(-1)-10-10-10-10-10-10-10-10-10-10-10-10-10-		
	82.00 105.6 106.1 106.1 106.2 108.1 119.6 122.2 122.9 123.2 123.3 123.5 123.6 123.7 123.8 123.9 124.0 124.1 124.2 124.3 124.8	82.00 105.6 106.1 106.2 108.1 119.6 122.2 122.9 123.3 123.5 123.6 123.7 123.8 123.9 124.0 124.1 124.2 124.3 124.8 Temperature (C r 82.00 S 105.6 S 106.1 S 106.2 S 108.1 S 123.9 S 123.9 S 123.9 S 123.9 S 124.8 Temperature (C r 82.00 S 105.6 S 106.1 S 106.2 S 108.1 S 123.9 S 124.0 S 124.1 S 124.2 S 124.3 S 124.8	82.00	Temperature (C)	Temperature (C)	Temperature (C)	Temperature (C)	Temperature (C)	Temperature (C)	Temperature (C)	Temperature (C)		

1

TEAM LND Calgary, Alberta CANADA

Case Name:	E: PRAKASH MUKHOPADHYAY DIPA.HSC
Unit Set:	SI
Date/Time:	Mon May 11 09:01:43 2009

				Dai	terrine.	MOT May 17 03.01.	.43 2003			
				Distillation:	REGEN	IERATOR	@Main	(contin	ued)	
				FEED	S/PRODUCTS	3				
13Main TS										
14_Main TS					l					
15_Main TS										
16_Main TS										
17_Main TS										
18_Main TS										
Reboiler	RBLR	Q	Energy	1.431e+007 *						
Reboiler	REGE	NETTMS	Draw		Liquid	1612	<u> </u>	1.610e+004	* 124.8	
					SETUP					
				Su	ub-Flowsheet					
			treams				Product Streams			
Internal Stre			l Stream	Transfer Basis		Internal Stream		al Stream	Transfer Basis	
RBLR Q			2 @Main	None Regid		COND Q		Q @Main	None Regid	
REGEN FE	<u>:D</u>	REGEN FE	ED @Main	P-H Flash		ACID GAS		AS @Main	P-H Flash	
					RE	GEN BTTMS	REGEN BT	TMS @Main	P-H Flash	
				V	/ARIABLES		L		•	
· · · · · · · · · · · · · · · · · · ·				Column Flowsheet \	/ars Available	as Parameters			******	
Dat	a Source			Variable		Component		T	Description	
				COMI	PONENT MAP	S				
				Fe	ed Streams					
	Feed N	Varne .		In to	SubFlowSheet		Out of SubFlowSheet			
RBLR Q										
REGEN FEED							L		·	
					duct Stream					
	Product	Name		In to	SubFlowSheet			Out of Sub	FlowSheet	
COND Q							ļ			
ACID GAS					<u> </u>		ļ			
REGEN BTTMS				l			<u> </u>			

Mass Heat Capacity

Thermal Conductivity

Surface Tension

Viscosity

(kJ/kg-C)

(W/m-K)

(dyne/cm)

(cP)

3.884

0.4818

0.8131

50.84

TEAM LND

Case Name:	E:PRAKASH MUKHOPADHYAY DIPA HSC
Unit Set:	SI
Date/Time:	Mon May 11 09:16:50 2009

Calgary, Alberta CANADA Cooler: Lean Cooler CONNECTIONS **Inlet Stream** FROM UNIT OPERATION STREAM NAME Mixer Mixure DIPA to cooler **Outlet Stream** STREAM NAME TO UNIT OPERATION DIPA to Pump Pump Pump **Energy Stream** STREAM NAME TO UNIT OPERATION COOLER Q **PARAMETERS** 0.1000 m3 34.47 kPa * Duty: 8.774e+006 kJ/h Volume: Pressure Drop: Not Selected Zones: Function: User Variables **PROPERTIES DIPA** to cooler Overall Aqueous Phase Vapour/Phase Fraction 0.0000 (C) 87.00 87.00 Temperature: (kPa) 148.2 148.2 Pressure: (kgmole/h) 1647 1647 Molar Flow Mass Flow (kg/h) 4.319e+004 4.319e+004 Std Ideal Liq Vol Flow (m3/h) 43.27 * 43.27 Molar Enthalpy -2.027e+004 (kJ/kgmole) -2.027e+004 Mass Entropy (kJ/kg-C) 3.884 3.884 -3.338e+007 -3.338e+007 Heat Flow (kJ/h) (kgmole/m3) 37.80 37.80 Molar Density (kg/m3) 991.3 991.3 Mass Density Std Ideal Liq Mass Density (kg/m3) 998.3 998.3 Liq Mass Density @Std Cond 1022 (kg/m3) 1022 Molar Heat Capacity (kJ/kgmole-C) 101.8 101.8

Molecular Weight		26.22	26.22		
Z Factor		1.309e-003	1.309e-003		
			DIPA to Pump		
	T	Overall	Aqueous Phase		
Vapour/Phase Fraction		0.0000	1.0000		
Temperature:	(C)	32.53	32.53		
Pressure:	(kPa)	. 113.8	113,8		
Molar Flow	(kgmole/h)	1647	1647		
Mass Flow	(kq/h)	4.319e+004	4.319e+004		
Std Ideal Lig Vol Flow	(m3/h)	43.27	43.27		
Molar Enthalpy	(kJ/kgmole)	-2.559e+004	-2.559e+004		
Mass Enthalpy	(kJ/kq)	-976.1	-976.1		
Molar Entropy	(kJ/kgmole-C)	93.82	93.82		
Mass Entropy	(kJ/kg-C)	3.578	3.578		
Heat Flow	(kJ/h)	-4.216e+007	-4.216e+007		
Molar Density	(kgmole/m3)	38.85	38.85		
Mass Density	(kg/m3)	1019	1019		
Std Ideal Liq Mass Densi	ty (kq/m3)	998.3	998.3		
Lin Mass Density @Std	Cond (kata3)	1022	1000		

3.884

0.4818

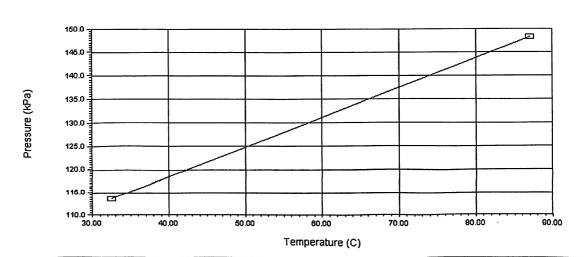
0.8131

50.84

Case Name:	E: PRAKASH MUKHOPADHYAY DIPA.HSC
Unit Set:	SI
Date/Time:	Mon May 11 09:16:50 2009

Cooler: Lean Cooler (continued)

PROPERTIES


DIPA to Pump

		Overall	Aqueous Phase	
Molar Heat Capacity	(kJ/kamole-C)	93.82	93.82	
Mass Heat Capacity	(kJ/kg-C)	3.578	3.578	
Thermal Conductivity	(vv/m-K)	0.4340	0.4340	
Viscosity	(cP)	3.347	3.347	
Surface Tension	(dyne/cm)	59.84	59.84	
Molecular Weight		26.22	26.22	
Z Factor		1.152e-003	1.152e-003	

PERFORMANCE PROFILES

Zone	Pressure (kPa)	Temperature (C)	Vapour Fraction	Enthalpy (kJ/kgmole)
Inlet	148.24	87.00	0.0000	-20265.95
0	113.76	32.53	0.0000	-25592.45

PERFORMANCE PLOT

PERFORMANCE TABLE

Overall Phase

Temperature	Pressure (kPa)	Heat Flow (kJ/h)	Enthelpy (kJ/kamole)	Vapour Fraction
87.00	148.24	0.00	-20265.95	0.0000
32.53	113.76	-8774284.06	-25592.45	0.0000

Vapour Phase

Mass Flow	Molecular Weight	Density	Mass Specific Heat	Viscosity	Thermal Conductivity
(kg/h)		(kg/m3)	(kJ/kg-C)	(cP)	(VV/m-K)
43192.45 43192.45	26.22 26.22	37.80 38.84	3.88 3.58	3.35	0.43

Light Liquid Phase

Mass Flow	Density	Mass Specific Heat	Viscosity	Thermal Conductivity	Surface Tension
(kg/h)	(kg/m3)	(kJ/kg-C)	(cP)	(Win-K)	(dyne/cm)
	····				

Case Name:	E:VPRAKASH MUKHOPADHYAY DIPA.HSC
Unit Set:	SI
Date/Time:	Mon May 11 09:14:00 2009

Spreadsheet: SPRDSHT-1

Units Set:

User Field

CONNECTIONS

Imported Variables

Cell	· Object	Variable Description	Value
B1	Material Stream: RICH DIPA	Comp Molar Flow (DEAmine)	258.5994 lbmole/hr
B2	Material Stream: RICH DIPA	Comp Molar Flow (H2S)	199.2897 lbmole/hr
B3	Material Stream: RICH DIPA	Comp Molar Flow (CO2)	0.0000 lbmoleAr
B4	Material Stream: Lean DIPA to Contactor	Comp Molar Flow (DEAmine)	258.6003 lbmole/hr
B5	Material Stream: Lean DIPA to Contactor	Comp Moler Flow (H2S)	0.8767 lbmole/hr
B6	Material Stream: Lean DIPA to Contactor	Comp Molar Flow (CO2)	0.0000 lbmole/hr
D7	Material Stream: Lean DIPA to Contactor	Comp Volume Frac (H2S)	0.0004
D9	Material Stream: Lean DIPA to Contactor	Comp Mole Frac (H2S)	0.0002

Exported Variables' Formula Results

Cell Object Variable Description Value

PARAMETERS

Exportable Variables

ı	Cell	Visible Name	Variable Description	Variable Type	Value
	D8	D8:		Vapour Fraction	2.4140e+02
	D1	D1:			0.7707
ı	D2	D2:			1.052e-007
	D4	D4:			3.390e-003
	D5	D5:			1.055e-007

User Variables

FORMULAS

Formula	Result
=h2/b1	0.7707
	1.052e-007
	3.390e-003
	1.055e-007
	2.4140e+02
	Formula =b2/b1 =b3/b1 =b5/b4 =b6/b4 =g9*1e6

Spreadsheet

	Α	В	C	D
1	Rich DEA *	258.5994 lbmole#hr *	Rich H2S Loading *	0.7707 *
2	Rich H2S *	199.2897 lbmole/hr *	Rich CO2 Loading *	1.052e-007 *
3	Rich CO2 *	0.0000 lbmole/hr *		
4	Lean DEA *	258.6003 lbmole/hr *	Lean H2S Loading *	3.390e-003 *
5	Lean H2S *	0.8767 lbmole#hr *	Lean CO2 Loading *	1.055e-007 *
6	Lean CO2 *	0.0000 lbmcle/hr *		
7			H2S Vol Frac *	0.0004 *
8			H2S ppm *	2.4140e+02 *
9				0.0002 *
10	Section of the sectio		The second secon	j