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ABSTRACT 

For numerous years, beginning in the mid-1970s, the path-planning problem for 

moveable machines has been a hot topic of research. There were various approaches 

proposed for this research domain. It is vital to find an appropriate technique to 

achieve both the quality and efficiency of a search. Because of the expected course, 

the robot does not waste time on superfluous steps or moving in local minimum 

locations. It is also preferable to avoid all of the identified barriers in the region. 

The mobile robot interacts with barriers in a heuristic manner. Mobile robots' main 

goal is to land at predetermined target places without colliding with impediments. 

The applications claims an intelligent selection of the optimal path. It could be 

achieved by discovering and learning the environment. Simultaneously, by 

removing the impediments, the machines should be able to reach the goal points in 

a discrete amount of period. 

Using improved optimization algorithms, the work presents an effective route-

planning approach for mobile robots. To elucidate the challenge of mobile robot 

path planning, a new solution uses a cuckoo optimization algorithm. This program 

accurately identifies objects and assesses the impact of various design decisions by 

creating a model to determine its performance. The proposed technique 

outperforms state-of-the-art understanding in various benchmarks, as well as 

providing categorization in real-time applications. 

The work's key contribution was to efficiently deployment of cuckoo-type robots 

for terrain assessment and disclosure. Q-learning, Cellular Automata (CA), and 

Cuckoo Search Optimization are the three methods used in this research (CSO). 

During the automation, the goal of this system becomes more sophisticated as the 

best sets of actions are identified. The different interactive components necessitate 

a parallel reinforcement learning process. Finally, the system's output was collision-

free navigation in an unfamiliar environment. Different statistical parameters are 

also utilized to compare an algorithm's performance. 

Keywords: Q-learning, Cuckoo Search Optimization, Cellular Automata, 

Unknown Environment. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

In robotics and artificial intelligence, autonomous navigation is a critical 

subject. The technique of directing movement from source to destination is 

known as navigation. Real-time navigation is a simple task for humans and 

animals, but it is extremely challenging for robots, particularly in an 

unfamiliar and changing environment. [Anmin Zhu et al. (2007)] 

Learning about the environment is an important step in autonomous 

navigation. Robot navigation may be classified into two types based on the 

surroundings: [Bashan Zuo et al. (2014)] 

(a) Navigation in a known environment: The mobile device has access to 

the global path and the location of the obstacles ahead of time. 

(b) Navigation in an unknown environment: The mobile device has no 

knowledge of the path or the location of the obstacles. This category can be 

further divided into the following subcategories: 

(a) Behavior-based approach: Within the sensor range, information 

about the surroundings can be acquired, and the pathway can be determined. 

(b) Learning-based approach: The robot learns the navigation method 

on its own, and as it gains experience, its performance improves. 

A learning-based methodology is necessary to implement the self-learning 

capability (reinforcement learning) within an autonomous system. Intelligent 

decision-making is enabled by a system's ability to self-learn. The system 

evaluates the environment before making a decision. 



2 
 

As a result, Navigation with Autonomy could be defined as the development 

and execution of a path from one point in space to different point in order to 

complete a task while identifying and avoiding collisions with obstacles or 

undesirable behavior. 

To optimize cost and energy measures, the plan should make the best use of 

existing resources. The navigation module for autonomous vehicles is a 

critical component to consider. 

Robots are utilized in practically every industry where a repetitive and 

complex task is required, as well as those that are hazardous or impossible to 

complete manually, such as: 

(a) In the aerospace and automobile industries, painting the car, welding 

various specimens or machines, and surface finishing 

(b) Applications in submarines and space. 

(c) Destructive fritter away remediation in administrative, nuclear, and 

medical labs. 

(d) Parts examination. 

(e) Assembling electronic and consumer products. 

(f) Inspection and distribution of parts in a diversity of productions. 

The idea of mobile robotic machine sovereignty encompasses numerous fields 

of technology in industrial engineering and modern technology. These 

approaches are intended for trajectory management, obstacle avoidance, 

mobile robot localization, path planning, and so on. The convenience of 

employing an explicit display of the navigation environment almost entirely 

determines the sensation of a map planning, obstacle avoidance, and 

navigation work performed by an autonomous mobile robot. 

The paradigms [Alempijevic et al. (2004)] regressed within the robotics 

community for self-navigation system are: 
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(a) Hierarchical (Plan Based Approach) 

(b) Reactive 

(c) Hybrid Deliberative 

The aforementioned concepts point to a significant inconsistency in 

Autonomous Navigation. A global map is used in the plan-based approach, 

which relies on global self-localization and is defined by sense-plan-act. The 

reactive system is defined by sense-act and employs local control rules in 

relation to local features. It also relies on precise local feature recognition. If 

the hierarchical approach utilizes sense-plan–act and the reactive approach 

uses sense-act, then Plan, Sense-Act describes the hybrid-deliberative process. 

As a result, this technique combines the best of both worlds, in that it includes 

a planner and the deliberate part of the planner. Following an overview of the 

paradigms, the following section examines the key operational aspects of an 

autonomous vehicle. 

The following are the primary operating characteristics of an autonomous 

vehicle: (a) Perception 

(b) Intelligence 

(c) Action 

Artificial intelligence, as an expression of the aforementioned attributes, is a 

flawless component. A great number of tools and algorithms are available in 

the field of artificial intelligence. Hill Climbing, A*, D*, Fuzzy logic, 

Artificial Neural Network (ANN), Neuro-Fuzzy, Genetic Algorithm, Swarm 

Intelligence, Particle Swarm Optimization (PSO), and so on are some of the 

AI methods available. However, if the environment changes even slightly in 

the above-mentioned techniques, reprogramming is required. Self-learning 

(Reinforcement learning) is required for any autonomous mobile system to 

avoid this. 

As a result, the research reveals that artificial intelligence is becoming the 

brain of a self-driving car. This chapter focuses on an introduction to artificial 
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intelligence (AI), followed by a classification of AI and its applications. In 

addition, the chapter concluded with a research problem statement, 

motivation, and study goal. The contribution of the thesis and the organization 

of the thesis are discussed in the chapter's later sections. 

1.2 Introduction to Artificial Intelligence 

Artificial Intelligence (AI) is an upcoming paradigm shift to the field of 

computer science, which provides computers the discretion and ability to 

perform and execute tasks, which require manual or human intervention. 

Artificial Intelligence musters the prowess to perform highly complex tasks 

with ease and give time-bound results. With the development of fields like 

machine learning and deep learning under the umbrella of artificial 

intelligence, machines now can perform actions that took years of experience 

and undivided attention with just a few lines of code written to provide the 

machine instructions based on the previous data. 

Artificial Intelligence relies hugely on complex algorithms. Algorithms are a 

chain of specific commands, which the machine follows to obtain a particular 

output. AI algorithms mostly rely on a steady stream of data, which helps the 

model learn and adapt to the data's pattern. These algorithms are powerful 

enough to recognize patterns, which are incomprehensible for a normal human 

brain. Sometimes the information is so enormous that it has to be represented 

in tens and hundreds of dimensions in vectors. This approach is undoubtedly 

not very recognizable for human brains as it cannot simply process such vast 

chunks of data at a given point in time. 

Artificial Intelligence relies so much on data that it has become the oil to every 

industry. The data, which was thought to be useless until 70 years ago, now 

had a significant role in providing companies and enterprises new business. 

These corporations could quickly learn how, when, and where the customer 

is most likely to use a service and make it available conveniently, which 

immediately made these companies such as uber successful. 
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Until the past decade, only major corporations, which had the resources, could 

use Artificial Intelligence, however with improved public technology, 

artificial intelligence was democratized for the public. Now everyone has the 

power of artificial intelligence built into their smart mobile devices. 

Applications like photo editing to file management are using artificial 

intelligence to provide ordinary people a better experience with increased 

productivity right at the convenience of their fingertips. 

With increasingly powerful machines at disposal for the typical person and 

rapid research in artificial intelligence, the lives of familiar people will be 

nothing but easier and convenient. 

1.2.1. Classification of Artificial Intelligence 

Unlike many other computer science branches, artificial intelligence spans out 

almost all possible applications through myriad data and structures. Broadly, 

AI has two types, but it can further be classified into more subdomains based 

on its functionalities. One of the broad classifications is weak artificial 

intelligence or narrow artificial intelligence. This type of AI focuses on a 

singleton task and directs all its efforts towards achieving one goal: acquiring 

the best set of performance on that one task. The other type of AI is Strong AI 

or an artificially intelligent machine that can think and process information 

like humans. Every weak AI is helping to achieve the goal of building 

someday a Strong AI model. 

The other type of classification for AI is based on its functionality. For 

example, a machine can be a reactive machine where the device does not have 

the capabilities to remember the past data and makes decisions on and as the 

data comes through. These machines were good back in the day, but with the 

development of better hardware, there are limited memory machines that 

could store some data to make valuable decisions in the not-so-distant future. 

Autonomous vehicles use this learning in many areas like observing lane 

changes and so on. Then there are two more proposed models: theory of mind, 

which can understand emotions, beliefs, thought process, etc., and the last 
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type of machines are the one self-aware ones. These machines have their 

consciousness and have their own set of beliefs and perceptions. 

1.2.2. Applications and Concerns of Artificial Intelligence 

Artificial Intelligence has been enormously pervasive in most industries, 

products, and services that surround us today. Applications range from 

producing information-altering e-systems like deep fakes, which work on 

Generative Adversarial Networks (GANs), to autonomous vehicles and places 

like creating original music and movies. 

While AI applications have since proved to be a massive boon for the entire 

community, it has many challenges and hurdles. The first and foremost is the 

problem of ethics. AI models are capable of learning about anything from the 

data they are being fed.  Since these models do not have discretionary power, 

they cannot decide what is ethically correct and wrong. Applications like deep 

fakes and GPT-3 have since been brought to light due to their uncanny 

abilities to alter accurate data into some truth-altering information, which is 

seemingly indistinguishable for the human eye. Although they have the power 

to solve many problems, these applications seem to have started creating new 

ones. Ethics is not the only challenge that AI faces. Cognitive abilities, 

knowledge representation, resource planning, social intelligence, perception, 

general intelligence are just some of the other difficulties AI faces. However, 

with increasingly successful research outputs and the continuing efforts 

towards making AI possible for everyone AI is becoming better and better and 

is coming closer to becoming one single pool of information for all the needs. 

1.2.3 Applications of AI in Autonomous Navigation 

Autonomous vehicles rely heavily on substantial data dumps by the onboard 

sensors to make decisions in real-time. However, this data requires almost 

instant processing. The algorithms must make the insights and understand 

the data as humans. This cognitive touch to these algorithms is provided by 

artificial intelligence. Almost every AV manufacturer and researcher have 

to build models using branches of AI like machine learning and deep 
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learning to make sense of this data and provide impromptu results and 

feedbacks to the system for path planning operations. 

While complete autonomy over human interactions on vehicles is a far-

fetched dream, AI proves helpful in driving assistance in emergency 

cases, taking over as co-pilot on the car in urban planned settings, traffic 

light coordination, cross-traffic relays, and simulates blind spot detection. 

With a massive amount of pictorial data, the AI models have started learning 

to adapt to complex environments with exponential numbers of stakeholders 

and objects in consideration. A large area where AI is also helping 

autonomous vehicles keeps the vehicle's health in check. With real-time data 

on vehicle's physical conditions and breakdowns, AI is reaching a new 

application area. 

1.3 Problem Statement 

In the age of unscrewed cars, autonomous navigation in an unfamiliar area is 

still a developing subject of study. Self-learning routing allows vehicles to 

travel from point A to point B with minimum human intervention. Any 

vehicle's capacity to self-learn allows it to explore the terrain in an unfamiliar 

location without supervision. 3D vision is a crucial field that allows 

autonomous vehicles to identify impediments with ease using depth 

perception. 3D vision may be used to identify the dimensions of the 

obstructions in the route. A system's reliability is important in addition to its 

capacity to identify impediments. The dependability of an autonomous system 

verifies that the service is delivered and the objective is met with the least 

amount of mistake possible. As a result, dependability may be defined as an 

autonomous vehicle's robustness and fault tolerance. If vehicles are modified 

to self-learn in an unfamiliar environment, robots can undertake tasks such as 

housework and space exploration with little or no human interaction. 

Individuals' lives will become less difficult and more comfortable as a result. 

The following research gaps were found: 

(a) The ability to make decisions in an unfamiliar environment. 

(b) Travel planning over a long period. 
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(c) The algorithms that are now in use are computational. 

(d) The ability to self-learn how to recognize impediments and retrace one's 

steps. 

(e) 3D vision for symbolizing the environment's objects. 

(f) Reliability, which includes Robustness and Fault Tolerance. 

(g) Symbolic Computing is more efficient than existing image processing 

techniques. 

Hence, a need to frame a research problem on efficient, trustworthy, self-

learning algorithms for autonomous navigation utilizing Symbolic Computing 

for 3D vision by noting the significance and obstacles in the literature on 

autonomous navigation. 

1.4 Motivation 

In the epoch of advanced research, particularly in robotic automation, 

development and deployment are vast. The variety of mechanical applications 

range is tiny. Assume unmanned robots to rovers in deep space where the 

availability of the human interface may result in catastrophic life 

endangerment. The complete operation of these autonomous vehicles solely 

depends on the algorithm designed for its effective execution. The primary 

function of an autonomous vehicle is navigation. Thus, appropriate navigation 

techniques and decision-making capability aided by the self-learning 

experiences of robots are essential. These experiences are based upon the 

algorithm designing for effective and efficient operation.  Given that time is 

another crucial constraint that limits the efforts, to be thorough. Let us 

consider a case where a given autonomous robotic vehicle gets trapped in a 

confined, limited access space, and then, this may lead to a failure to reach the 

destination.    

Given the complexity of the above-stated operation, a need for an effective 

algorithm specially designed for obstacle detection, avoidance, and 

restoration of the original path in a real-time scenario. Additionally, it would 
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be advantageous to step up learning and decision-making capabilities to 

complement the vehicles intelligently.  All the above-stated characteristics are 

essential for autonomous vehicles. Despite the above field, dependability is 

required to provide a smooth service, i.e., the system should be robust and 

fault-tolerant.  

Thus, the idea of designing an efficient self-learning intelligent algorithm for 

obstacle detection, avoidance, and restoration of the original path for an 

autonomous vehicle is worth enduring research. 

1.5 Objective 

The objective of the research is "To develop Symbolic computing-based 3D 

machine vision and self-learning algorithm for autonomous mobile 

system." 

At the onset, the following sub-objectives were laid down, outlining the 

significant aspects of the undertaken research work. The design of artificial 

intelligence algorithm involves: 

1. To study the various existing algorithms for autonomous 

navigation. 

2. Identify the issues in existing independent navigation algorithms. 

3. Understanding the concepts of Symbolic Computing. 

4. Explore the various possibilities of the environment to prioritize 

the Autonomous Navigation algorithm according to the need of the 

situation. 

5. Developing the complementary model of the environment using 

the 3D vision. 

6. Devising the intelligent, self-learning algorithm for efficient 

autonomous navigation. 

7. Implementing the newly designed algorithm. 

8. Performance testing of the newly implemented algorithm and 

comparing the existing algorithms to show the efficiency of the 

newly implemented algorithm. 
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1.6 Contribution of the Thesis 

The approach given here demonstrated a proven cooperative autonomous 

robot without the use of prior terrain knowledge. The work's key contribution 

is to fully and efficiently deploy cuckoo-type robots to explore and resolve 

terrain exploration and coverage. Another prominent part of the thesis 

describes symbolic computing. The effective path planning results with the 

incorporation of cellular automata during map-building. 

 

1.7 Organization of the Thesis 

The research is organized into six chapters. Each chapter is divided into 

sections and subsections. 

Chapter1: Introduction 

It introduces the autonomous vehicle, artificial intelligence, and various 

applications of an autonomous vehicle. 

Chapter2: Literature Review 

It covers the various techniques used for the navigation of the autonomous 

vehicle and a comparison of the past studies. 

Chapter 3: Model development for autonomous navigation in an 

unknown environment. 

It covers the detailed description of the design of the system for autonomous 

navigation for an unknown environment. 

Chapter 4: Implementation of the self-learning system for autonomous 

navigation 

It covers the performance of the system for the environment provided to the 

mobile device. 

Chapter 5: Result and Analysis 

It covers the results and analysis of the complete research work. 

 



11 
 

Chapter 6: Conclusion and Future Scope 

This chapter focuses on the conclusion of the complete research work and the 

future scope of the work.  

Bibliography and Appendix A 

This section will be covering the references used for writing a thesis, followed 

by a list of publications in Appendix A. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Background 
The autonomous mobile device should accomplish the goal of navigating in 

an unknown environment without human interaction. The mobile robots 

should have proper path planning by avoiding collision with the obstacles and 

achieve the target. There were wide applications for the design, development, 

and operation of navigation in obscure environs in the later past. The study 

shows that the robots can be divided into three categories: manually 

controlled, remote-controlled, and autonomous controlled robotic systems, as 

illustrated in figure 2-1. Micromanagement of automated systems that call for 

extensive human involvement for its functioning was termed a manual robot. 

These automatic systems need exceptional human authority for controlling 

various processes incorporated with the machines. Manual Robots embrace a 

series of robotic systems, from elementary to highly advanced, all dealing 

with a specific control system according to its diligence. On the other side, a 

remote-controlled robot is defined as any vehicle, i.e., teleoperated by a means 

that does not restrict its motion with an origin external to the device. In 

addition, the last and foremost category of robots is autonomous. Human-like 

robots that have the power to get to their conclusions and accomplish an action 

consequently called Autonomous robots. The primary working mechanism of 

these robotic systems was to perceive the environment, make conclusions on 

the perception, and trigger a movement for the environment.  
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Figure 2-1: Types of Robotic Systems 

This category of robots further sub-divided into programmable, non-

programmable, adaptive, and intelligent.  

A programmable robot is a novel machine with a selector ability. 

Reprogrammable robots are possible, depending on the type of use that is 

permitted. After the robot has been adjusted once to play out power in the 

supplied example and fixed arrangement, the capacity and utilization of the 

robots can be changed by reinventing them. The main disadvantage of this 

self-contained robot is that once customized, it cannot be changed. It 

continues actively, regardless of whether there is a necessity for amendment 

in the assignment (in case of crisis). They can be utilized in various operations 

like versatile mechanical autonomy, manufacturing governance, and 

spacecraft implementations. 

 

 TYPES OF ROBOTS 

 Manual Robots  
Remote 

Controlled Robots  
AUTONOMOUS 

Controlled Robots 

 PROGRAMMABLE 

 
NON-

PROGRAMMABLE 
 ADAPTIVE 
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Figure 2-2: A Programmable Robot 

A non-programmable robot is one of the most basic sorts of robot. This robot 

is an exploiter without a reprogrammable control device. Mechanical arms 

employed in enterprises are examples of these types of robots. As 

demonstrated in Figure 2-3, robots are frequently added to programmable 

devices used in organizations for large-scale manufacturing. 

 

Figure 2-3: A Non-Programmable Robot 
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Industrial robots that can adjust to changing ranges in the process on their own 

are known as adaptive robots. On the other hand, these robots are more 

sophisticated than programmable robots. These may be modified to a degree, 

and once evaluated, they can execute the necessary activity in the adapted 

zone. These robots are frequently equipped with sensors and control systems. 

Intelligent robots, as their name implies, are the smartest of all the robots with 

sensors and microprocessors for data storage and processing. Due to their 

situation-based analysis and task-performing abilities, these robots' 

performance is extremely efficient. Pain, smell, taste, vision, and hearing are 

all senses that intelligent robots can detect. Execute actions and expressions 

such as emotions, thinking, and learning in agreement. These robots have a 

variety of uses, including medical, military, and household appliance control 

systems.  

 

Figure 2-4: An Autonomous Robot 

In this section, an outline of algorithms specialized in autonomous navigation 

in an unknown environment is presented. Various procedures like mapping, 

localization, and path planning are involved in exploration. A map must be 

made to control the development of a robot in a specific situation by and large. 

The versatile robot in an obscure domain and gathering helpful information to 

develop a map for further navigation is called autonomous exploration. 

 

This chapter structure is as follows, Section 2.2 describes algorithms used for 

autonomous navigation in the proposed work. Further section 2.3 illustrates 
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the past studies proposed and implemented in various application areas by 

different researchers. Moreover, the last section, 2.4, delivers a summary of 

the chapter.  

 

2.2 Algorithm for Autonomous Navigation in the proposed Work 

Conventionally, robots have been fully tele operated by human administrators. 

However, with an increase in applications of the robots and the diverse 

scenarios that they have to act, the self-learning route can expand the shots of 

the achievement. The algorithms intended for path planning consume more 

energy, diminishing the rate of the robot. Traditionally, obstacle avoidance 

and path planning were performed in 2D using 2D sensors [Simmons R. 

(1996); Borenstein J. (1989); Thrun S. (2002)]. Since it is not precise to 

represent the 3D world into the 2D images; hence 3D images can provide 

better mapping and navigation of the robots. The path-planning algorithm is a 

NP-hard [B. Chen et al. (2008)], where the complexity is directly proportional 

to the degrees of freedom of the vehicle.  

From the past studies, it reflects that there were algorithms designed for 

autonomous navigation such as Dijisktra, A*, D*, Genetic Algorithm (GA), 

Simultaneous Localization and Mapping (SLAM), Simultaneous Positioning 

and Mapping (SPAM), Reinforcement Learning, and the list continues.  

The impending segment of this chapter elaborates reinforcement learning 

followed by cuckoo search optimization technique, and symbolic computing 

would be discussed in the latter part of the chapter. 

2.2.1 Q-Learning Algorithm 

According to [Sutton and Barto (2018)], Reinforcement Learning is a 'goal-

oriented machine learning system.' To begin the task, initially, it interacts with 

the environment and then takes decisive steps. Generally, an RL control agent 

is imbibed with every control problem that communicates with the state of the 

climate iteratively. The actions modify according to the change of signals as 

well as the duration of the activities. It depends on the behavior policies 𝜋, 

feedback reinforce reward r which estimates from waiting time, delaying time 
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and the transit time, following states s' and the RL agents optimize its 

transition probability P. The policies based on the mapping between possible 

states S and possible actions A with learning factor, discount factor, and the 

rewards. During learning, the policies are tuned up with the rewards until it 

reaches the goals. Below fig.2-5 portrays the illustration of the learning 

process in reinforcement learning.  

 

 

Figure 2-5: Illustration of the learning Process in RL (Sutton and 

Barto,2018). 

A state-action pair recognize control; the reward of each state calculates the 

value function of the RL. The value of the state is the derivation from the 

discounted reward in the long term for policy 𝜋 from state s. It is given as,  

𝑉𝜋(𝑠) = 𝐸 [
𝑅𝑡

𝑠𝑡
= 𝑠]     (1)  

 

The above eqn.1 is viewed in the bellman form, and it is given as, 
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𝑉𝜋(𝑠) = ∑

𝑎

𝜋(𝑎 ∨ 𝑠) ∑

𝑠 ,𝑟

𝑃(𝑠 , 𝑟 ∨ 𝑠, 𝑎)[𝑟 + 𝛾𝑉𝜋(𝑠′)]                 (2)  

 

The value of the action is denoted as 'Q-value,' which consists of a long-term 

discounted reward on the selected action a and the state s, concerning the 

policy 𝜋 is given as,  

𝑄𝜋(𝑠, 𝑎) = 𝐸[𝑅𝑡 ∨ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]                                           (3)    (3)  

 

It is further decomposed into bellman form as,  

𝑄𝜋(𝑠, 𝑎) = ∑

𝑠′,𝑟

𝑃(𝑠′, 𝑟 ∨ 𝑠, 𝑎) 

         (4) 

 

About RL algorithms, Q-Learning is one of the well-known RL algorithms 

that serve as off-policy. Irrespective of the policy, the learning process of the 

actions is explored independently. In the viewpoint of Q-learning, the RL 

agent picks the actions' a' from the possible set of actions A based on the 

highest Q-value. A greedy searching process computes the Q-values.  The 

computed Q-values are preserved in a matrix referred to as 'Q-table,' which 

consists of discrete values. It computes the state value s from the set of states 

S in coordination with action value a from the set of actions A. While 

computation, the learning policies are updated greedily for every step process. 

The following equation learns the updated Q-values. (5).  

𝑄𝑘(𝑠, 𝑎) = (1 − 𝛼)𝑄𝑘−1(𝑠, 𝑎) + 𝛼            (5)  

Where,  
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𝑄𝑘- At the learning step k, the Q-value is updated.  

𝑄𝑘−1- Present Q- value stored in the Q-table 

r - Present reward value during the k-steps of the learning process.  

s - Present state value during the k-steps of the learning process. 

a - Present action value during the k-steps of the learning process. 

𝛼- An adjustable learning rate.  

The detailed process of computing rewards, states, actions, and the learning 

rate will be discussed. Since the Q-learning algorithm performs at both on-

policy and off-policy, it is collectively grouped under the class of Markov 

Decision Problems (MDP). The MDPs are defined as making decisions in a 

sequential process based on the selected controlled actions.  The stochastic 

control theory mostly resolves these problems. With the baseline of the work 

explored by Bellman, the computational complexity of the MDPs is adjudged 

with the help of Dynamic Programming (DP). It is primarily applicable to 

large-scale and complex problems that include discrete steps such as Policy 

Iteration (PI) and the Value Iteration (VI).  These are manipulated, preserved, 

and estimated by the concept of Transition Probability Matrix (TPM). Since 

the random variables are instantiated, it is quite complex to deal with the 

probabilities of the transitions. This problem is known as the curse of 

modeling. The transition elements are more significant in dimension, which 

impacts the storage and manipulation process. This problem is stated as the 

curse of dimensionality. Both the problems are challenging in the DPs, which 

is more reflected in the application areas of the robotic systems.  

 The system under the MDPs is treated as the chain of action process. In the 

perspective of the Markov chain, the system navigates randomly from one 

state to another state at a discrete-time movement. In continuation with the 

previous states, the current transition will be determined. The current state is 

determined from the newly updated learning value. Under the subset of states, 

the system has the responsibility to select the actions from the set of system 

actions. A policy is established for every state. These states are rewarded with 

a reward value r, positive, negative, or zero. It helps the system to select the 

best actions. Therefore, the task of MDPs is to find out the optimal policies 
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which give an accurate performance measure. Overall, it contributes more to 

the discrete time taken for the learning process.  

It has two famous metrics, discounted reward, and the average reward. The 

discounted reward is the aggregate sum of the rewards earned on a given 

discrete time with the pursuit of policy, whereas the average reward is the 

most awaited reward gained at each step of the learning process. Let d(i) be 

the chosen action of the state i for the policy d'. Here, the d composes a finite 

set of states, |S|. Let r(i, a, j) represent the expected reward from state i to state 

j for an action a, and p(i, a, j) represents the probability rate of the same 

transition.  

 Definition 1: The policy d' under the discounted reward at the state i is given 

as:  

𝐽𝑑′(𝑖) ≡ 𝜀                    (6)  

 

Where,  

𝑥𝑠 is the state prevailed before the  𝑠𝑡ℎ transition; 

𝛾 is the representation of the discount factor.   

𝜀 is the expectation operator, which will be updated to derive the optimal 

solution.  

Definition 2: The average reward of the policy d' at state i is given as:  

𝜌
𝑑′

(𝑖) ≡ 𝜀                                                 (7) 

 

The representation of symbols is above the same, in specific to, the average 

reward is self-determined irrespective of the starting state. By deviating the 

learning rate, an optimization problem is experienced under the learning 

process. Henceforth, the findings of the underlying optimization problem 

become a vital part of the robotic systems.  
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2.2.2 Cellular Automata 

The robotic systems are used for an automation process in various application 

fields. In manufacturing sectors, some robots are employed for navigation 

purposes, i.e., randomly moving from one location to another. In that, some 

cases demand multiple robots to speed up the navigation process. In such a 

scenario, the different tasks need to be processed. When a robot commits to a 

task, it moves randomly from its initial position to its destination position 

under a defined working area. Therefore, navigation control of the robots is 

known as path planning, which is of prime importance. According to the 

planned paths, the objective of moving robots has become a fascinating 

research topic among researchers. The construction of paths as well as 

navigating the robots to the planned paths are challenging tasks. The cellular 

automata discover the task of building an obstacle-free optimal path between 

the source and the destination. In the process of tracking the planned paths, 

controlling the torque movements becomes critical.  

 In the course of the path planning process, the design of positions of the 

robots develops obstacles on the underlying working area. Based on the 

presence of the information, the planning of the paths may be static (or) 

dynamic. The knowledge about the obstacles before the navigation control of 

the robots is known as static path planning. The partial information about the 

obstacles given to the navigation control of the robots is known as dynamic 

path planning. The off-line refers to the static process whereas, the on-line 

refers to the dynamic path planning. Several methods have been developed to 

find the obstacles at an earlier stage to avoid delays during navigation. Some 

authors have developed graph-based approaches that connect the source and 

the destination with the help of intermediates. The edges of the source and the 

destination points are connected with the possible set of obstacle-free paths. 

A path, generally, represents a straight line that interlinks the sub-points of 

the vertices among the source points, destination points, and obstacle points.  

It is found that the intermediates cause more obstacles before reaching the 

destination point. A visibility graph is constructed to find out the available 
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paths, and from these, an optimal path, i.e., the shortest path, is discovered. 

The shortest path is the one that holds a minimized distance cost, which is the 

prime motive of the research study.  

Once suitable paths are discovered, then the optimal path is selected by 

different searching algorithms. Along with the graph-based approaches, cell-

based decomposition approaches are also established for an optimal path 

planning process. CA is one of the branches of modern science, representing 

the high-complex process by its intrinsic discrete nature via digital processors.  

Cellular Automata (CA) is one of the recent concepts studied in autonomous 

robot systems. Most of the robotic applications are decentralized by nature. 

Henceforth, CA establishes new transition rules with the help of neighboring 

cells and the possible states of the cell. In general definition, it forms a 

dynamical system by performing local interactions with the components of 

the navigation systems. Initially, it consists of N cells in a lattice. Each cell 

possesses a unique identification pattern in its local connections. This typical 

pattern is used to communicate with other cells. Here, a transition rule for each 

state of a cell i at time t+1 is computed for interacting with the neighborhood 

cells. Let 𝑍𝑑be the finite sets of the d-dimensional lattices and 𝛴be the set of 

the finite fields. The cells communicated in the lattice are generally 

represented in map form, and therefore, it is given as,  

𝑐: 𝑍𝑑 − −→ 𝛴                                                   (8)  

 

It is further expressed mathematically as,  

 𝑠𝑖
𝑡 ---> At time t, the state s of the cell i, which comes under 𝑠𝑖

𝑡 𝜀 𝛴.  

 𝜂
𝑖
𝑡 − −→The states of the neighborhood cells and the current cells are 

stored.   

Then, the transition rule of a cell in a lattice is given as,  

𝛷: 𝛴𝑛−→ 𝛴                                                 (9) 

where,  
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The size of the neighborhood is represented as n.  

𝛷(𝜂𝑖) - It gives the information of neighborhood state 𝑠𝑖
𝑡+1for the cell i as a 

function of 𝜂𝑡 

These distinctive characteristics in CA have helped for the path-planning 

process by exploring the goal attraction and local decision making. With the 

usage of the sensor of robots, the neighborhood's local decision and state at 

each discrete step are computed by the CA rules, i.e., transition rule. The 

outcome of the implementation is to navigate the deployed robots to reach a 

goal point in a straight line. While performing from initial points, an obstacle 

is faced. To cope with an obstacle, at the same time, reach the goal point as a 

team has been established through a desirable navigation pattern. The robotic 

environment is in 2 -dimensional form with a square of cells with side l. In 

general, the robot's size may be larger than the l. Even so, it is viewed as a 

single cell. The information about the state of the neighborhood cells is 

collected using the robot's infrared proximity sensors. It is assessed by two 

navigation patterns, viz, triangular and linear patterns. Two views employ the 

transition rules for a robot system:  

a) The first rule: It helps on how to deviate from the obstacles 

b) The second rule: It helps to control the navigations.  

These two rules are generalized through master-slave control architecture. 

The relative position of other robots and their navigation patterns are given by 

following this architecture. The main robot obtains the position's information 

of other robots in its team, and then it will decide what rule to apply for further 

process. Henceforth, this process requires a decentralized control system 

which is given by CA-based approaches. A navigation pattern is the one, 

which is eventually deviated from the obstacles. Thereby, the strategies 

followed in the path planning process are: 

a) Building of neighboring cells  

b) Decision-making process of transition rules 

c) Applying transition rules on actions of robots.  

The possible states of the deployed robots are Free (Fr), Robot (Ro), and 

Obstacle (Ob). Based on the measurement readings of the sensors, the 

neighborhood cells are formed. The information about the neighborhood cells 
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are preserved in vector form as, V= {𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8} and 

𝛩𝑅 stores the current angle of rotation. It is assumed that the five angles of 

rotation are possible. Consider an instance that a robot is willing to navigate 

south to the north. Then, the possible angle of rotations is computed as, and 

shown fig. 2-6.  

a) The initial points 𝑣0 to 𝑣1 is 𝑜∘ 

b) 𝑣1 to 𝑣2is 45∘ 

c) 𝑣2 to 𝑣3 is 90∘ 

d) 𝑣3 to 𝑣8 is −45∘ 

e) 𝑣8 to  𝑣7 is -90∘ 

At a given time, step t, two kinds of discrete movements of a robot is possible, 

the first movement is navigating to its next cell by monitoring the present 

orientation of cells, and the second movement is rotating the present 

orientation of cells. During the movement process, the distance is calculated 

as l for neighboring cells and the √ l for diagonal cells. Each cell is updated 

by its current states s, just by defining the next movement of the robots using 

the transition rule of CA. Overall, a transition rule is the combination of the 

present state of the neighborhood and the angle of rotation 𝛩𝑅 . With the help 

of a generated set of rules, i.e., control rule and the deviation rule. Each robot 

recognizes the neighborhood and attains the target points. If any obstacle is 

found, then an alternate deviation rule will be used. Else, the control rule will 

be used.  

 

𝑣8 

 
𝑣1

 
𝑣2 

𝑣7 𝑣0 𝑣3 

𝑣6 𝑣5 𝑣4 

                    Figure 2-6:  Spatial Neighborhood 
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According to the deviation rule, it is further encountered with the two sets of 

rules, and one deals with the movement of the next cell i, and the second deals 

with the moving of a robot. A pair of rules are being applied over the 

navigation control of the robots, and the first rule determines the state of the 

robot within the cell, i.e., the state is free (or) not, and the second rule 

determines the navigation of the robot if it is free. The below fig. 2-7 explores 

the two models of robot movements.  

 

Figure 2-7: Movements of the Robots  

The fig. A & B represent the two scenes of robotic movements wherein the 

pair of rules are applied. The fig. A represents the scene of a neighborhood in 

which a robot is placed in a central cell. In the second scene, fig. C and D 

portray the neighborhood with a free central cell. The robots' position and size 

are denoted using an arrow, green-colored cells are obstacles, and the white 

cells are free. Let us assume that the robot is willing to be defined from south 

to the north, then the crossing axis is estimated. The fig. A presents two 

obstacles i.e 𝑣1&𝑣2 and its orientation is -90∘, then it moves to the cell 𝑣7 

with the same orientation. In the fig. B, central position is the free cells and 

robot in cell 𝑣3, then an obstacle at the same orientation is found in 𝑣2cell. 

The above two scenes depend on the action of the central cell state, which 

leads to achieving the goal point. Fig. C & D represents the working of the 

following transition rule. If the orientation of the robots is different, it is 

understood that the deviation rule is applied to free itself from obstacles and 
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then move onto its neighborhood cells. Here, when the robot tries to navigate 

to the north, three obstacles (𝑣1, 𝑣7 and 𝑣8) have to be faced. In such a scene, 

it rotates the angle to 90∘. Similar to that, in fig. D, the robot tries to navigate 

to the west, an obstacle is identified in its previous state, and thus, it is 

compelled to rotate towards free cells. As of now, at time step t, cell 𝑣2 acts 

as the obstacle, which is again compelled to reach its initial orientation.  

In this manner, the CA rules are generated for the deployment of multiple 

robots. Finally, the formation control rule will guide the multiple robots each 

time step t reaches the goal points. It also helps eliminate the obstacles by 

taking reverse orientation and making the robot attain its prior paths. It also 

indicates that the robot will be forwarded if the robot is on-axis; else, it takes 

diagonal steps to move the robot. However, the main problem is applying 

deviation rules when an obstacle is found in the planned paths.  

2.2.3 Cuckoo Search Optimization 

The chief responsibility of deploying cuckoo search optimization is to select 

optimal paths from the set of available paths. The set of available paths are 

learned from the Q-Learning and the cellular automata process. Optimization 

is an essential process for efficient autonomous robots. Since it is an unknown 

environment, a tremendous amount of variety of obstacles is being populated. 

Selecting an optimal path in an unknown environment is a complex and 

challenging task. If the robot needs to attain its goal point without any 

obstacles, then a different sensor is deployed over the real-time environment. 

It is a time-consuming as well as a cost-efficient process. The planning of the 

paths may be local path planning (or) global path planning dependent on the 

surroundings. The building of global path planning demands a completely 

known environment, and whereas the local path planning performs even in 

known and unknown environments. Through various approaches suggested 

for efficiently finding the paths, it is in under a developmental stage. 

The shortest path is the possible path free from obstacles and constraints of 

the environment, and a smooth straight line is required between the initial 

point and the goal point. This kind of scenario is projected as an optimization 
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problem. Here, a recent optimization algorithm known as cuckoo search is 

explored for the path planning process. Cuckoo Search belongs to the class of 

metaheuristic search models. Birds' swarming behavior served as inspiration, 

a searching process is instantiated by the researchers. In specific to, laying 

eggs on the nest of host birds by its parasitic behavior is explored. It is the 

most straightforward algorithm compared to the Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO). It takes fewer simulation parameters 

than the other optimization models.  

Generally, the cuckoo birds follow an intrinsic and aggressive reproductive 

way. It lays the eggs over the nest of other birds, and that host birds may hatch 

(or) brood the chicks. In some cases, the host bird destroys the eggs; when the 

laid eggs are someone else's, (or) it demolishes the nest. A recently created 

method uses the parasitic behavior of its species to tackle optimization issues. 

It also uses the levy flight behavior of the birds to build the new nests at each 

iteration.  Levy flight behavior is a behavioral type that deals with the random 

walk process, wherein each step is scaled up by the distribution of probability.  

According to the law of power, the probability distribution of levy flight is 

given as,  

 𝑦 = 𝑥−𝛽                                                (10)  

  

Where, 

𝛽 is an infinite variance that ranges from 1 to 3.  

 The rules to be followed in deploying cuckoo search are listed as 

follows:  

a) For a given time t, one egg is yielded by the cuckoo, and, 

concurrently, it dumps the eggs in another nest in an arbitrary 

process.  

b) The nest with the quality of eggs is treated as the best nest, and it is 

forwarded to the next process.  
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c) A fixed number of host nests is assumed, and then the egg presented 

in the nest of the host bird is calculated as a probability 𝑝𝑎𝜀[0,1].  

In some cases, the host birds may build new nests at different locations, and 

thus, rule c will be maximized (or) minimized based on the random solutions. 

In the maximization problem, the grade of the fitness value is directly 

proportional to the objective value. In simple terms, the solution represents 

the egg in the nest, and the new solution represents the cuckoo eggs. The 

attainment of a better solution for a nest is the ultimate goal of this system. It 

can be further extended in the case of resolving multiple eggs in the nest. A 

novel result is generated by levy flight behavior is given as,  

𝑋𝑖
(𝑡+1)

= 𝑋𝑖
(𝑡)

+ 𝛼 ⊕ 𝑙𝑒𝑣𝑦(𝜆)                                                           (11)  

Where,  

𝛼 tends to change its size according to the defined problem area. In most 

cases, it is generally assumed to be 1.  

The above eqn. (11) follows a random walk, which is formulated by the 

Markov chain process, i.e., its previous location determines the following 

location of the egg (𝑋𝑖
(𝑡)

) and its probability of transition (𝑙𝑒𝑣𝑦(𝜆)). ⊕ is the 

entry-wise multiplication operator, which helps to explore more search space 

for a longer time. 

2.3 The Work Focus on Autonomous Navigation in the past 

The literature on autonomous navigation and path planning algorithms 

illustrates that it is still a domain of research. The researchers are still focusing 

on the development of an efficient and effective algorithm for navigation. 

These procedures are regularly required for the arrangement of the local 

minima issue. Researchers are analyzing distinct efficient ways in which this 

problem can be resolved. So the recent works on robot navigation are 

discussed related to various domains in the following section. 

The integration of several approaches is necessary for efficient path planning 

in spatial representation, ensuring a significant and accurate mobile robot 
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navigation. This paper introduces an optimization algorithm for planning the 

path of a mobile robot.  

Dijkstra's algorithm is used in the algorithm to find the shortest way. In a 3D 

environment, the robot's size is compared to the size of the obstacle by the 

proposed algorithm. 

[Panda & Choudhury,(2015)]discussed the challenges associated with 

dynamic motion planning for mobile robots. These challenges are handled 

through a distinct approach when environments are dynamic by considering 

the behavior dynamics from a control point of view. The robot interacts 

dynamically with its local context, which represents the mobile robot existing 

in motion planning. The process of interaction dynamically models and 

controls motion planning. The behavior dynamics adjust the motion planning 

issue of mobile robots powerfully into a reasonable issue where the integrated 

arranging and control framework is included by bringing a change through an 

optimization issue in the robot's speeding up space. 

[Hosseininejad & Dadkhah,(2019)]  uses the cuckoo optimization algorithm 

to propose a new method that resolves the challenges of planning mobile robot 

route in a changing scenario. Moreover, currently projected technique uses the 

feature vector to minimize the computational complexity. Additionally, 

another technique is proposed which minimizes the feature vector's dimension 

for minimizing the overall computational complexity entirely. 

[Sun, Liu & Leng,(2006)]introduced an efficient algorithm involving shortest 

path planning which works on planar mobile robots having a time complexity 

of O(4 x n) where n is found to denote the geometric complexity of the non-

dynamic planar environment. The algorithm employed a limitation as well as 

the greedy method employed in utilizing the Dijkstra algorithm. The shortest 

path generated by the method is high-speed and hence can be enhanced. 

[Tharwat et al. (2018)], a model based on the Bézier curve is proposed for 

route mapping. The decision points present in the Bezier curve impact the 

distance and flatness of the track altogether. A new algorithm named specific 
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Chaotic Particle Swarm Optimization (CPSO) algorithm is proposed to 

enhance the control points of the Bézier curve. The proposed calculation gives 

two variations, specifically CPSO-I and CPSO-II. The selected points enable 

the ideal even path to limit the absolute distance evaluated between the 

beginning and ending points. The conventional PSO algorithm is compared 

and checked with results generated by  CPSO-I and CPSO-II algorithms to 

assess the CPSO calculation. 

[Mo & Zu,(2015)] consolidated another hybrid optimization algorithm BPSO  

with an accurate  Voronoi boundary network to propose another robot path 

planning approach. The method for condition modeling is shown. Following 

this, the Modified BPSO decides the best method dependent on AVBN. 

Compared to other algorithms, the proposed method comprises a much faster 

convergence speed and minimum failure rate. Further, intelligent optimization 

proposes a new approach to solve RPP. 

[Ghosh et al. (2017)] employ an autonomous mobile robot to achieve optimal 

path by proposing two efficient, intelligent optimal controllers consisting of 

bat algorithm (BA)  and flower pollination algorithm (FPA) in an unfamiliar 

condition. FPA is designed by taking into consideration the process of 

pollinating flowering plants where various pollinators transport pollen.BA 

solves different kinds of optimization problems in engineering through 

echolocation and frequency tuning. A fitness function is considered 

autonomously for achieving the path-planning task of a mobile robot by 

considering the distance between the robot and the obstacle or between the 

robot and the goal satisfying the criteria of obstacle avoidance. The robot 

shows the goal achiever's behavior. The mobile robot considers the values 

provided by the objective function to avoid obstacles in an unfamiliar 

environment and arrives at its goal. 

[Das et al. (2015)] employed hybridization of improved particle swarm 

optimization (IPSO) in combination with an improved gravitational search 

algorithm (IGSA)  for multi-robot to determine the optimal trajectory of the 

determined path in a cluttered environment. IPSO possesses social 
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characteristics which the proposed approach incorporates into the movement 

of IGSA. The developed hybridization IPSO-IGSA  maintains the suitable 

equilibrium between searching and overuse due to the adoption of co-

evolutionary techniques for enhancing the expedition of IGSA and particle 

positions combined with  IPSO velocity together. The algorithm diminishes 

the maximum path length. It also reduces the time of arrival of each robot to 

its distinct destination in the environment. The robot generates individualistic 

decisions by employing the proposed hybrid IPSO–IGSA to understand and 

communicate to identify the following positions from their current location in 

the world map. 

[Zhang et al. (2016)]proposes a modified ant colony algorithm to arrange the 

path of a mobile robot in a perceived stable condition. The modified ant 

colony algorithm expands the searching through a range that debilitates the 

local minima issue, enabling the algorithm to focus quickly. The turning 

element is likewise considered in the optimal path searching process. 

[Das et al., (2016)] a new methodology to solve optimization problems is 

proposed along with several evolutionary algorithms, including Genetic 

Algorithms, Differential evolution algorithm gravitational search algorithm, 

PSO, and  Bee Colony Optimization for application in the problem of planning 

of multi-robot path. There are two parts in the fitness function of the GSA to 

avoid the impact which occurs when robots collide with static obstacles. They 

are the fitness function depicting the way toward choosing the following 

position on an optimal trajectory through the estimation of speed, and 

different incorporates the restrictions on acceleration. Newtonian's law of 

gravity and movement helped to make the design of the heuristic algorithm 

PSO. There are various changes in GSA, and these changes have several 

applications. Currently, the original version is improved by the different 

variants of GSA. The algorithm has also found application in many areas. 

There are apparent targets of the different robots, and these robots have PSO 

where an overall fitness function is created in a multi-robot way arranging the 

issue. This fitness function decides the accompanying position of the robots, 

which are remaining in ideal directions and moving towards the individual 
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objectives. The path-planning problem emerges in the circumstance when an 

iterative algorithm gets a request to decide the accompanying position of the 

considerable number of robots by settling every one of the imperatives 

existing in the multi-target work. The algorithm continues repeating until each 

robot arrives at its destination. In the molecule swarm streamlining algorithm, 

various new highlights are added to improve it to decide the way direction for 

different robots, which uniquely characterizes beginning positions to 

explicitly picked objective views in the earth to limit the way length of the 

considerable number of robots. 

The outcome uncovers how the algorithm has improved the arrangement 

quality inside a reasonable timeframe. The particle swarm optimization 

algorithm (IPSO) gets enhanced to make arrangement with the way arranging 

issue of the multi-robots, leaving all around by expanding the combination 

rate. Ultimately, the recreation has demonstrated the productivity of the IPSO 

with the Khepera condition, and the outcome is contrasted and different 

algorithms, including a PSO and DE. IPSO method offers vigorous execution, 

self-deterministic interaction and deals with a problematic domain in the 

multi-robot framework dependent on a dynamic structure.IPSO proposes a 

path-planning plan to ideally get the accompanying states of the robots from 

the present position in the intended condition. 

[Zheng et al. (2016)] proposed an improved ant colony algorithm where the 

infinite step length exists to estimate the optimal path. It focuses mainly on 

the drawbacks of the standard ant colony algorithms, such as determining the 

single step length to recognize the optimal path inclined towards the local 

optima and weak convergence. There exists an increased chance of selecting 

a path of ant along with optimizing the results. The heuristic information 

adopts multiple priorities and utilizes choose/ grid mode to adopt a modified 

update mode of local information. 

[Sudhakara & Ganapathy, (2016)] determines the best path for moving from 

a start state to a destination state through a new optimization technique for a 

robot with no collision with obstacles. Modifications are carried out on the 
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existing A-star algorithm so that the robot can travel in an unfamiliar 

environment that comprises static obstacles. The robot is assumed to move to 

the destination position without colliding with any of the obstacles present. 

The Enhanced A* algorithm follows an optimal path to help the robot to reach 

the target. 

[Parhi,(2018)] performed a  review analysis on navigational methodologies of 

robots through different artificial intelligence techniques, including Neural 

Network, Particle Swarm Optimization (PSO), Fuzzy Logic,  Genetic 

Algorithm, and additional Artificial Intelligence techniques. During the 

review analysis, the review was carried out systematically, and the role of 

several artificial intelligence techniques was utilized to control and navigate 

different kinds of robots facing different environmental conditions. 

[Song et al., (2017)] uses η3 -splines along with a modified particle swarm 

optimization (MPSO) to propose a new approach. At first, η3 - splines are 

utilized for including an arbitrary arrangement of points where the kinematic 

parameters are chosen to relate with the movement and the control of mobile 

robots. The MPSO algorithm comprises adaptive random fluctuations (ARFs) 

and is, for the most part, created to control the frequently oversaw local 

convergence. The issue is the system of arranging the smooth worldwide way. 

The MPSO algorithm has shown the evolutionary state incorporating 

classification averagely at each iteration provided by the evaluated 

evolutionary factor. There exists a switch in the velocity improving dynamics 

for varying modes as per the evolutionary state with the ARFs. These are 

imposed on the global/local best particles in a way suggested by the current 

iteration. 

[Naz, et al.,(2018)]describes the networks of few modular robots which are 

lattice-based and only use neighbor-to-neighbor interactions. These networks 

develop into sparse and huge breadth networks. Furthermore, tight limit to the 

diameter and the breadth of these networks. There exists a crucial design issue 

through complex distributed networks due to the large diameter and the vast 

average distance of massive-scale lattice-based networks. 



34 
 

[Huang et al. (2019)] reviews various techniques associated with mobile 

robots in WSNs. It helps scholars understand the flow within every category, 

the relationship among different solutions, accurate information, and in-depth 

analysis. The distinctions and likenesses between the accessible approaches 

are compared past various classes regarding scientific formulation, 

application, and so forth. 

[Chen & Chiu, (2015)] developed a map, planned optimal paths, and designed 

mobile robots through an optimal robot path planning system. The system 

designs a grid-based map by collecting the information from several 

foundation and still hindrances. The system estimates the optimal flight by 

utilizing a basic neural network model and developing a mobile robot. The 

mobile robot determines the ambient conditions for dynamic obstacles and 

avoids possible collisions. 

[Yuan et al. (2019)] develop a mobile robot collision avoidance algorithm by 

utilizing the characteristics of improved ACO and APF and figuring a novel 

GRU-RNN system model to finish the changing route development of 

moveable robots in a new domain. The GRU-RNN system has recognized the 

principal framework's arranging approach, and there is an all-out presentation 

in light of the use of the improved ACO and APF calculation. 

[Thai Duong et al. (2020)] focusses on real-time occupancy mapping and 

collision testing for an autonomous machine navigating in an obscure 

environment. A novel mapping technique suggested for engaged and 

unrestricted space. A distinct decision boundary is available for the spaces 

available. 

2.4 Summary 

This chapter focuses on past research in autonomous navigation. Various 

algorithms were used for navigation, and the advantages and limitations were 

discussed.  In addition, it dealt with algorithms used for the design and 

development of the self-learning algorithm. In the next chapter, the design and 

development of the model for autonomous navigation.  
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CHAPTER 3 

MODEL DEVELOPMENT FOR AUTONOMOUS 

NAVIGATION IN AN UNKNOWN ENVIRONMENT 

The chapter covers the design and development of a new optimization 

technique using the Q-Learning and Cellular automata algorithms. 

3.1 Introduction 

In the modern era, the scope of robotic applications has been increasing 

gradually with the possibility of technology developments. In the current 

scenario, robotic applications are least deployed due to certain complexities 

faced by the deployer during deployment actions, such as setting motion 

variables, planning of paths, and box pushing. It also consumes heavy 

computational time. The applications of robots are widely adopted from 

engineering fields to the agricultural fields. Planning the path is a critical task 

in robotic applications, and it proves to be challenging to create a setup 

environment. Thus, the researchers are more fascinated with the study of path 

planning in robots by avoiding the obstacles. Many techniques are invented to 

control the movements of autonomous vehicles. In order to identify the 

obstacles, the touch sensors and infra-red are used in its working area. Radio 

Frequency (RF) sensors observe the position of the target area. Along with 

these lines, machine vision approaches are deployed for the accurate position 

of the robots   

In the course of autonomous robot applications, the finding of accurate 

positions becomes a challenging task. It belongs to the class of heuristic 

approaches. The concept of the heuristic approach is to resolve the sub-

problems by learning the past experiences to cope with the solution of new 

problems. Henceforth, different learning models are established, such as 

reinforcement learning and deep learning. It is observed that the minimized 

fabrication procedure and the localized navigation models are of prime 

importance. The wide use of robots is noticed in the industrial sectors. The 

key objective of the robotic arrangement is to operate collaboratively without 
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any obstacles. When the robots are performing collaboratively, the automation 

tasks become relatively simpler and more manageable. The advantages of 

collaborative learning based robots are presented as follows:  

a) It offers a distributed solution, i.e., reduced time, space, and 

automatic functions.  

b) The parallel performance of robots has ignited the different 

tasks of different applications.  

c) Duplicating potentialities has increased the robustness and the 

reliability of the other robots.  

d) It supports different kinds of operations with more 

expandability.  

Despite its numerous benefits, the most common issue that prevails is route 

development for circumventing the barriers (or) planning the paths according 

to the industrial application requirements. In this context, 'robot navigation' 

becomes an active and fascinating research area. The prominent emphasis of 

this work is to discover the unswerving track among the existing paths. The 

significant metric of the robot path planning is estimating the time taken to 

start from the target and reaching the targets. With the association of different 

sensors, efficient environments have been created by the robotic system. In 

the implementation, cellular automata and Q-learning concepts are some of 

the reinforcement learning models that have been explored. In addition to that, 

one of the well-known optimization techniques, the Cuckoo Search algorithm, 

has also been explored here.  
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3.2 Proposed Framework  

The section portrays the implementation of the proposed design of a robot. 

Fig. 1 presents the workflow of the proposed navigation function of a robot. 

        

 

Figure 3-1: Workflow of the proposed algorithm 
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Table 3-1: Steps of SAARTHI Algorithm 

 

 

 

Steps of the proposed framework 

Step 1: Initiating the position of the robots by their built-in sensing devices. 

Step 2: Generating the 3D maps for the planning of motion.  

Step 3: Applying cellular automata to build the paths.  

Step 4: Dividing the dynamic environment into cellular decomposition. 

Step 5: Each cell is anticipated as an interactive component that consists of 

states and actions.  

Step 6: Constructing the set of available paths with the help of the Q-

learning system.  

Step 7: Performing the CSO parameters to select the optimal shortest path.  

Step 8: Finally, the performance measures are taken by introducing the 

obstacles and without obstacles.  
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Algorithm: The novel approach for autonomous navigation in an 

unknown environment. 

 

Input: A= No. of actions,  S < R: No. of actions to be selected,   

(𝜆(𝑗))
𝑗𝜖𝑁

: Rate of the learning, (𝜂(𝑗))
𝑗𝜖𝑁

: Rate of the averaging 

factor,(𝛾(𝑗))
𝑗𝜖𝑁

: Rate of the discount factor. 

Initialize the population: n host nest 

Output: 

While end condition is not satisfied,  

1. for each cell [i], synchronously with other cells, do: 

                  (i) Perform an exploratory selection with probability α(k), 

                         (a) According to CLA, choose a random super action as [i]   

                         (b) Using greedy selection procedure,obtain a maximum 

expected reward for the action 𝛼𝑖(𝑘) 

8. Finding the set of paths by observing the cells. 

9. for    Robot Cell (C) ≠Target Cell (T) 

10.         Find the best cell 

11.         Evaluate with the free cell 

12. Finding the paths  𝑃 = ∑𝑝
𝑖=0 𝑆   

13. Initiating the set of paths as Cuckoos 

14. For ( 𝐹𝑖  == Best (f(N)),     𝐹𝑖 ++) 

16.       Obtain the best solutions, i.e., best path (P) 

17.end for 

18.end for 

19.end for 

19.end While 

 

Table 3-2: SAARTHI Algorithm 
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3.2.1 Model and Assumptions 

The robots have knowledge on only about their original position. The sensors 

deployed in it have to detect the obstacles within its environment 

automatically. The unknown environment is divided into grid cells with a size 

of 20 cells. The built-in sensors of the robot sense these cells during the central 

placement of the robots, the cells of an entire area are covered. During the 

experiment, it is also assumed that the range of the robot’s sensor can 

recognize the obstacles in the three-dimensional orthogonal view of the 

neighboring cells. During robots in a cell, an individual spanning tree is 

administered for each exploration process of a cell. The present location of 

the cell is occupied as input to the algorithm, and the output is the spanning 

tree of the robot. Since it scans by orthogonal views, all positions, i.e., up/ 

down/ top/ bottom, are visited. The below fig. 3-2 illustrates the sensing 

directions of the cells, where it depicts the position of the robots (RP), 

Obstacles (O), and the intermediate cells (a,b, and c).  

 

           

 

Figure 3-2: Sensing the direction of the cells 

Here, the robots can label the visited cells, enabling the differentiation of the 

covered and uncovered robot cells. With the help of intermediate cells, the 



41 
 

sub-cells are also covered by the robots in a defined terrain. The covered cells 

are frequently updated in the Q-table. This table will permit us to easily cover 

the uncovered cells by constantly pushing the cells into stack S. Later on, 

according to the experiments, the covered cells are taken up for the other 

analytic process, viz, path planning. The deployed robots are homogeneous 

by nature, in which the cells are accessible from any position. It is also 

assumed that the robots implement independently due to the design of 

decentralized algorithms. The following are the constraints of the proposed 

algorithm for an unknown environment.  

A planar structure of terrain is considered, which is continuous and encircled 

with an outer boundary. It is partitioned into 2D square cells, which composes 

of 4- subcells. Robots are moving continuously between two adjacent 

subcells. It follows a complete path-coverage, i.e., the starting and ending 

point of the sub-cells remains unique. The robot takes only one move at a 

particular period.  

3.3 Environment Learning 

The living creatures are emerging and developing sustainable ecosystems by 

abiding with the known and unknown environment. Along with this growth, 

the robots are designed based on adapting to the dynamic environment. The 

intelligence of the robots performs coordination with the processing ability of 

perception, decision-making, and the action over the environment. The entire 

structure of the intelligent capability of the robots has been achieved by the 

skill and knowledge acquisition capabilities of the robots within a dynamic 

environment. Therefore, the scope of defining an intelligent and interactive 

learning module about the robotic environment plays a crucial role in the 

manufacturing sectors.  

Learning can be ensured by discovering, interacting, and observing the 

environment. In human beings, the knowledge is inherited from their parents 

and children exploring via teaching. It takes the inheritance of knowledge by 

offspring. Therefore, symbolic information processing is employed to percept 

intelligent robotic systems. In some cases, logical information processing [R. 
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Bormann, (2016)] is done because of the inference, which might reduce the 

state of the data such as vagueness, fuzziness, and the paradox. Likewise, 

intuitive information processing is also done by dealing with incomplete data, 

fuzzy and feeble interference, and information synthesis. The information 

analysis of logical and intuitive information processing takes a little higher 

computational effort and time. Henceforth, it can be declared that the 

organization of the information processing is also essential. Terrain 

Exploitation and the Coverage analysis are the two prominent sectors that 

determine the efficiency of industrial robots. It gives an overview of the 

behavior postulated by the robots presented in the alignment of developing 

digital technologies. The intelligence of the robots is acquired from their 

learning and experiences of the past conducts. 

On the learning and adaptation process, the established intelligent techniques 

(E. Castello, 2013) are explained as follows:  

Science deals with the brain system: It portrays the process of biochemical 

and physical models of the human brain. The connection among the nerves 

dictates the function of the human brain. Hence, it is named neural networks.   

Soft Computing: Zadeh establishes that it deals with the information 

processing units. Some objective functions are created and analyzed over the 

collected information to enumerate the functionalities of the application 

requirements.   

Artificial Life: It is explored by three approaches, namely, molecular level, 

cellular level, and organism levels. Each level is exposed using software and 

hardware mechanisms.  

Computational Intelligence (CI): It depends on symbolic data rather than 

knowledge acquisition. It is operated from three modes, artificial, biological, 

and computational.   

Based on the above technologies, numerous techniques are explored, which 

are summarized in brief. Mainly CIs are employed to develop an intelligent 
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robotic system from self-adaptability, evolution, and intelligence. It explores 

the description of the internal and the externals of the intelligence approaches. 

It stimulates the functions of the human brain, and thus, information accuracy 

is ensured. In recent times, Neural Networks(NN) and Fuzzy Systems (FS) 

are the widely used mechanism to simulate the human brain. The cognitive 

patterns of the brain are used for training and the pattern recognition process. 

In some cases, it also identifies incomplete patterns. The domain analyzes the 

role of the dynamic system, ‘neurodynamics,’ which develops a non-linear 

mapping [P. Chand, (2013)]. Likewise, neural networks are composed of 

different interconnected layers among input, output, and activation units. It 

helps for applications dealing with the recognition, controlling, and pattern 

matching models. The psychological features of the brain will be simulated 

for modeling purposes.  

3.4 Summary 

This chapter summarizes the design and development of the system. Further, 

it discusses the importance of environment learning. Communication between 

the environment and the robot is also discussed. The intelligence of the robots 

is acquired from their learning and experiences of the past conducts. It is 

understood from the discussion; Map Generation will have some effects on 

resolving the terrain exploitation. The implementation will be discussed in the 

next chapter.  
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CHAPTER 4 

IMPLEMENTATION OF THE SELF-LEARNING SYSTEM 

This chapter covers the implementation of the autonomous machine system in 

a dynamic environment. The preceding chapters have discussed the 

fundamentals design of the Q-learning, Cellular Automata (CA), and the 

Cuckoo Search Optimization (CSO) straightforwardly. Here, the 

implementation of the algorithms mentioned above under a robotic 

environment has been portrayed with an implementation scenario.   

4.1 Exploration of terrain and the coverage of the robotic environment 

Most robotic applications nowadays require robots to intelligently choose the 

best course by exploring and understanding their surroundings. At the same 

time, the robots must eliminate the barriers in order to reach the objective 

spots in a specific period. In some cases, with the help of past learning and 

experiences, it should respond to dynamic requests. By adopting technological 

developments, multi-robots are being deployed in an unknown environment, 

which offers a higher level of scalability, robustness, and redundancy 

reduction. Along with that, path exploration and coverage are handled 

effectively to achieve a collaborative environment. Depending upon the area 

covered by the deployed sensors, the robot can learn the environment, and it 

is also not facilitated with any prior information.  While sensing the 

environment, robots share many aspects of the exploration process. Despite 

that, exploration covers the boundaries of the environment, even remote 

sensing, whereas coverage senses the working area of the environment. It is a 

need that the designing of the proposed algorithms should meet the 

requirements of performance enhancement of multi-robot instead of 

optimizing the sequence number of actions.  

Coverage analysis will help out to build an efficient path planning process. 

The geometrical properties of the coverage area should be identified and 

performed with the cellular decomposition of the environment. Once the cells 

are decomposed, then searching-based coverage algorithms are deployed. Due 
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to the positioning of furniture and the dynamic change of human actions, the 

coverage algorithm produces a high level of complexity in an unstructured (or 

unfamiliar) setting. Therefore, the work on assuring an obstacles-free 

environment with the capabilities such as communication, location-

knowledge, planning of paths, and collision avoidance is prime important. The 

objectives of this work is to find the best shortest path for a mobile device in 

a new (or changing) environment.  

 4.2 The proposed scheme implementation 

The proposed scheme, a “novel cuckoo search optimization using Q-

learning,” tries to develop an intelligent selection of an optimal shortest path 

for the robots in a changing environment. The proposed scheme is a kind of 

self-learning process. The scheme performs incrementally by constructing 

multiple Q-table for multiple robots at concurrent time steps. It is assumed 

that each of the robots is presumed from its starting positions (S1….Sk) of the 

terrain. The challenge of this work is to discover the optimal express route 

from the k-sub paths of the k-robots. On the other side, it is cautiously 

monitored that the robots cover the entire terrain. Along with these lines, the 

robot covers each of its sub cells only once.  

The behavioral properties of the robots are explained in a detailed manner for 

the proposed scheme. During the navigation process of the robots, some 

controlled actions are performed, which are known as behavioral properties. 

Here, four behaviors are recognized: choice of the cells, identification of the 

boundary, avoidance of the obstacles, and movements. These behavioral 

properties are explained as follows:  

(a) Choice of the cells: The selection of the target cell is the goal of 

the work. The present position and the information about the neighboring cells 

are obtained from this behavior. The search action is performed heuristically, 

in which the uncovered cells are covered by continuous exploration of the 

robots under the terrain.  
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(b) Identification of the boundary: Here, the obstacles are assumed 

to be static. It combines with the obstacle avoidance properties to update the 

robots about their previous and current boundaries.  

(c) Avoidance of the obstacles: The choice of the cells does this. If 

any obstacles (or) boundary are identified, the robot aims to eliminate the 

collision among the working area by moving to the unoccupied space of 

adjacent cells.  

(d) Movement: With the help of the Q-table, the robot intends to reach 

its target points via subcells.  

The proposed schemes are explained as follows:  

(A) Q-learning algorithm:  

This algorithm aims to learn about the behavior of the cells and their subcells 

during the navigation process of robots. This algorithm takes trial and error 

on the defined parameters. The deployed robots initiate the working process 

by just learning the environment via the reward and penalty process. Here, the 

selected action is accurate; then, the learned data is represented as ‘reward.’ 

Else it is labeled as ‘penalty.’ The Markov Process does this learning process, 

and thus, decisions made from this process are known as ‘Markov Decision 

Process.’ The term ‘Markov’ is coined because it portrays the future states 

depending on the data provided by the present states. Let S = {S1,....Sk} be 

the set of states and t be the present time of the states. Then, the probability 

state of the Markov process is given as,  

P[St+1|St] = P[St+1|S1, S2, · · · , St]                                        (12)  

Since the robots are homogeneous by nature, the markov chain under the 

transition probability is independent towards time t, which is given as,  

P[St+1 = s'|St = s] = P[St = s'|St−1 = s]                                  (13)  

Let the tuple (S, P) be the Markov chain process, in which S represents the 

finite set of the states map and the P be the transition probability matrix of the 

state. The proposed Q-learning algorithm maximizes the rewards of a robot 
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by taking a consequence series of actions in the dynamic robotic environment. 

The rewards are maximized by learning the environment and presenting it in 

the form of transition maps. Fig. 4-1 represents the block diagram of the 

proposed Q-learning algorithm.  

 

Figure 4-1: Block diagram of the proposed Q-learning algorithm 

 

 

 

 



48 
 

Step 1: Initializing the Q-table  

The learning process is started by creating the Q-table. It is projected as m * 

n matrix, where m represents the number of states and n represents the number 

of actions.  The sample Q-table is illustrated in fig.4-2.  

 

Figure 4-2: Sample Q-table  

Figure 4-2 portrays the sample Q-table. It consists of four actions, viz, up, 

down, left, and right, and five states, viz, start, idle, correct path, wrong path, 

and the end.  

Step 2: Selecting an action  

Depending on the robotic environment, the learning process begins by 

selecting any one action at a time t.  

Step 3: Performing an action  

Here, the actions are performed based on time steps. The robots learn the 

environment by collecting the previous and past states of the cells by taking a 

series of actions. Initially, the Q-value in the Q-table is represented to be 0. 

Consider an instance, (action a) right ( ) performed to start (state s) the 

process, then the Q-table is updated by using the Bellman equation. The 

exploration process begins by performing a greedy strategy on the dynamic 
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environment. Therefore, the sample updated Q-table according to the Bellman 

equation is shown in fig. 4-5.  

 

Figure 4-3: Updated Q-table   

 

Step 4: Measuring the rewards 

A crucial step that helps to build an efficient path planning. It is evaluated by 

the function Q(s, a). The learning rate is determined at the initial step. The 

function Q(s, a) will continuously learn the environment until the criteria of 

learning rate terminates. The maximized Q-value of an action at that state is 

rewarded. The bellman equation is given as:  

𝑄 (𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑄′(𝑠 , 𝑎 ) − 𝑄(𝑠, 𝑎)]          (14)  

Where,  

𝑄 (𝑠, 𝑎) ----> Updated (new) Q-value for the state and action  

𝑄(𝑠, 𝑎)   ----> Present Q- values  

𝛼  ----> Rate of learning 

𝑅(𝑠, 𝑎)  ----> Rewards taken for action at a state 
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𝛾  ----> Rate of discount  

𝑚𝑎𝑥𝑄′(𝑠 , 𝑎 )  ---> Maximum Expected future rewards 

Here, the rewards are symbolized as follows,  

(+ 1) ---> When the current step is closer to the goal  

(-1) ----> When the current step hits the obstacles  

(0) ----> When the current step is in idle state 

  

Figure 4-4: Final Q-table 

Figure 4-6 represents the sample final Q- table. In this way, the Q-learning 

algorithm has helped to find (or) learn about the unknown environment. The 

work is known as collecting the data for the training process using the Q-

learning algorithm. The estimation of reward value portrays the robust 

learning model that enhances the performance of the system. Likewise, the 

discount factor helps estimate the data by an agent, which is greatly helpful to 

deal with the shortest path planning. It reduces the effects of data overfitting. 

Fig. 4-7 presents the workflow of the Q-learning algorithm.  
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Figure 4-5: Flowchart of the Q-learning algorithm for navigation 

(B) Cellular Automata & Cuckoo Search Optimization:  

Once the training data process is created, then the position of the robots has 

been explored by the concepts of cellular automata. Here, the objective 

becomes more complex because of finding the optimal actions from the set of 

actions. Since the environment is projected into a grid of cells, each cell 

contributes as a learning component. During the learning process, the best 

actions are learned to recommend the neighboring components for further 

actions. For the experiment, a parallel reinforcement learning process makes 

an optimal action selection from a set of actions. By doing so, it can manage 

all kinds of actions and preserve the time and space complexity of the 

environment. Once the optimal action is selected, the optimal shortest path is 

analyzed using Cuckoo Search Optimization (CSO).  

Initially, the position of the robots by acting in a state is explored using 

cellular automata. It is a hybrid learning model that combines the learning 
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process and the automation process of a robot's cell in a dynamic environment. 

With the help of Q-learning, the automation process by determining the local 

rules. The research objective is to explore a total capability of maximizing the 

expected reward function for each learning automation process. Let the 

aggregate number of actions at cell i be 𝑎𝑖 and the action to be chosen be 𝜔𝑖. 

Then, the set of actions of cell i is denoted as 𝐴−𝑖 = {𝑎−𝑖1, . . . . 𝑎−𝑖𝑧}. Let △𝑖be 

the policy strategies associated with it and 𝑛𝑖be the number of neighbors of 

cell i. At step k, the probability of selecting 𝐴−𝑖 is given as 𝑝𝑖𝑗(𝑘)and 𝛽be the 

policy strategy over 𝐴−𝑖 And the average actions of reinforcement learning at 

time step k is given as 𝑄𝑖. Let 𝑁𝑖(1). . . . 𝑁𝑖(𝑛)Be the index value of the 

neighboring cells.  

The learning system operates on the probability of the set of actions. Initially, 

the joint distribution of the actions was estimated by the maximum empirical 

rewards. It conjoins with other learning automata, even on neighborhood cells. 

The obtained LA combines with the probability of joint distribution to form a 

single optimal action (or) super-action. The super-action increases gradually 

by the selected probability of super-actions.  During the exploration process, 

the probability of the super-actions is acquired. Each selected action in the 

neighborhood is continuously observed, and their empirical values are 

updated frequently. Every performed action sent feedback from the 

environment to its learning component. Depending upon the obtained 

feedbacks and the probability distributions, the estimated Q-table is updated.  

Based on the selection super-action, a mutated greedy selection process is 

performed. Initially, the maximum expected reward action must be selected. 

Here, let us assume 𝛼𝑖(𝑘) be the present action. Then, the new action from 

the selected action 𝛼𝑖(𝑘)is computed as  

 𝑝𝑙 =
1−𝑞𝑙(𝑘)

∑𝑗∈𝐼 1−𝑞𝑖(𝑘)
      ∀𝑙 ∈ 𝐿                                                      (15)  
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Where,  

𝑞ℎ =
𝐸𝑟(𝑎𝑖ℎ,𝑝𝑛𝑖(𝑘))

∑𝑎𝑖𝑠∉𝛼𝑖(𝑘)
𝐸𝑟(𝑎𝑖𝑠,𝑝𝑛𝑖(𝑘))

      ∀ℎ ∈ {
𝑙

𝑎𝑖𝑙
∈ 𝐴𝑖 ∧ 𝑎𝑖𝑙 ∉ 𝛼𝑖(𝑘)}                         (16)  

 The above eqn. (15), is continuously operated for all maximum 

expected reward of super-action. Then, the reinforcement learning vector 

𝛽𝑖(𝑘)is calculated for the chosen super-action=1, as below.,  

 𝑝𝑖𝑗 ^+1) = {(1 − 𝛾(𝑘))𝑝𝑖𝑗^(𝑘) + 𝛾(𝑘)𝑖𝑓𝛼𝑖(𝑘) = 𝑎𝑖𝑗}                    

                                 {(1 − 𝛾(𝑘))𝑝𝑖𝑗 ^(𝑘)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}                                       (17)  

 𝑄𝑖(𝑘 + 1, : ) = 𝑄𝑖)                                                                                  (18)  

 𝑄𝑖 (𝑘 + 1, 𝑎𝑖𝑗 , 𝛼( )(𝑘))= 𝑄𝑖 (𝑘, 𝑎𝑖𝑗 , 𝛼(1)(𝑘). . . . 𝛼( )(𝑘)) + 

        𝜂(𝑘) (𝛽
𝑖𝑗

(𝑘) − 𝑄𝑖 (𝑘, 𝑎𝑖𝑗, 𝛼(1)(𝑘). , . . . . 𝛼( )(𝑘)))            ∀𝑗 ∈

{
𝑙

𝑎𝑖𝑗
∈ 𝛼𝑖(𝑘)}                              (19) 

The above process is continued until the stopping criterion meets. During step 

k, the selected super-action is learned via the learning component, i.e., 

neighborhood cells. Since each action is performed separately, the learning 

process becomes more viable.  The probability of empirical distribution of all 

super-action is then given as input to the cuckoo search optimization 

technique. The constructed maps have assisted in tracking their position and 

planning time of the navigation. In order to achieve the main goal of the 

research, this optimization technique has been beneficial in an unknown 

environment. Before moving into the working of an optimization technique, 

the proposed learning automata are given in Algorithm II.  
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Steps of cellular automata for path selection 

Step 1: Declaring the initial cell as the current cell with a state s and the 

action a. Each cell is a learning component.  

Step 2: Initially, all cells are marked to be ‘not visited.’ 

Step 3: Finding the unvisited neighboring cell with the maximum expected 

reward points.  

Step 4: If the neighboring cell is not found, then labeled it as ‘ visited’ and 

stopped the learning process.  

Step 5: If the neighboring cell with maximum expected reward points <= 

Current cell with maximum expected reward points, then labeled it as 

‘visited’ and stop the learning process. 

Step 6: Re-declare the current cell as a neighboring cell.  

Step 7: Terminates the process until all cells are visited. 

 Step 8: Estimate the set of planned paths.  

Table 4-1: Steps of cellular automata for path selection 

Path planning is carried out on some barrier constraints, which are known as 

obstacles. With the help of discrete steps of time, the robots can navigate on 

the planned paths. Likewise, the learning rate is defined to be less than the 

sensing range of the sensor associated with the robot. At each step, robots look 

for the availability of obstacles in the navigation process. Along with that, the 

position of the obstacles is also estimated. If the robot finds any obstacles with 

its distance step, then the cuckoo search model suggests a new obstacles free 

path. Here, the point of the obstacle and the existing position of the robot is 

declared as the initial point. The path is planned between the new starting 

point and the target point connected with new intermediate points. Then, an 

optimal distance value is estimated if the robot does not face any obstacles 
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during the navigation process. Here, the path exploration process is done by 

two processes, namely, local navigation and global navigation process.  

(a) Local search navigation process:  

Here, a conventional line that contains the preliminary point and the 

destination point assists the robotic machine. The robots follow this route until 

it recognizes the obstacles. The detected obstacles will be resolved by 

deviating from the present position of the robot, which is frequently updated 

by the learning component. Then, a new position and new distance will be 

rationalized for assisting the upcoming robots. In this process, the robots 

already know the position of the target point.   

(b) Global search navigation process:  

It is a planning process where the robot moves randomly with the prior 

information known to them. It is the procedure for choosing the optimized 

mode to reach its target points by information loaded on it.  Henceforth, the 

judgement for the movement of the mobile device from the start and the end 

is predetermined and directed into the environment.  The fig. 4-8 presents the 

sample scenario of the need for optimization technique. It is clearly 

understood from the figure, in order to resolve (or) eliminate the obstacles 

presented in the robotic environment, an optimization algorithm is required. 

Here, different dimensions of test cases are explored to find an optimal 

shortest path.  
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Figure 4-6: Sample scenario of the robotic environment 

 

Steps of Cuckoo Search for Robot Movement  

a) Initializing the paths with known obstacles, set of super-actions, and 

the robots.  

b) Initializing the parameters, maximum iteration (𝐼𝑚𝑎𝑥 Which is 

always less than the sensing range of the robot).  

c) For each time step k, the robots are moving randomly in association 

with the planned paths. While doing so, the robot senses the 

obstacles within its sensing range.  

d) If the obstacle is not recognized on the planned path, it moves to the 

last step.  

e) The robot is traversing through its planned paths. If the obstacle is 

found, then the middle coordinate of the device is treated as the 

starting point. The initial location of the automaton is considered to 

be the local search value. The local search value is estimated for all 

robots under the learning component. Finally, the number of 
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intermediate paths with obstacles-free is found, then step (c) is 

described as the optimum path. 

f) The robot randomly moves onto the next step.  If the straight line of 

the path (between two cuckoos) followed by the robot is always 

lesser than the (𝐼𝑚𝑎𝑥. Each cell will be covered at each time step to 

range the next intermediate point.  

g) The machine moves until the destination point is attached (or) 

proceeds with step (c ).  

Table 4-2: Steps of Cuckoo Search for robot movement 

 

4.3 Implementation of the test cases 

During the execution, different dimensions of the map are being constructed. 

Each map was tested under the robotic environment. The proposed map 

consists of 10 sets of states with ten sets of actions. Assume that the speed of 

the obstacles is greater than the speed of the robot navigation. The obstacles 

are projected as static obstacles, which are captured by the shapes like 

rectangles.  Here, it contains three grid points, i.e., starting, target, and 

intermediate points. If the obstacles were found, then the intermediate point 

is taken as the starting point. Initially, the motion of the obstacles is arbitrary, 

and thus, the exact position of the robot is not measured accurately. Therefore, 

the robot finds the place of obstacles by learning the cells. In order to avoid a 

collision, the cells with minimum distance are considered. If the robot does 

not find the obstacles, it moves into following neighboring cells. The process 

continues until it reaches the target points.  
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Figure 4-7: Illustration of the simulating environment 

Here,  

       ----> It represents the robots  

      ----> It represents the obstacles  

    ----> It represents the targets   

The environment simulation infers the following benefits. The robot can attain 

its target point, even in the presence of obstacles. In some cases, dynamic 

obstacles are also created. Thus, the formation of the rectangular shape of the 

grid points has helped the robot find its paths to attain the targets.  

The deployed robots can also eliminate (or) resolve the obstacles from the 

opposite directions, i.e., obstacles presented in the inner boundary and an 

outer boundary. It ensures that the robot takes the obstacles free- movement. 

It also guarantees that the quickest way is chosen; ensuring that the least 

amount of money and time is spent. It is beneficial for all sorts of dynamic 

environments. The proposed scheme takes discrete control over the robotic 
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learning agents, which is helpful for an efficient dynamic path planning 

process.  

Each mapping point on the map has been estimated from its local association 

with the neighboring cells. The preserved data in each cell point is the present 

computation between the target point and the neighboring points. Its distance 

determines it. The information being updated by distance as well as grid point 

has helped the neighboring points. Thereby, it is concluded that the 

computation process is independent by the nature of arrangements of the grid 

points. The current order of the updated grid points gives the global 

knowledge of the current and previous grid points. Likewise, the path of the 

robots is estimated from its real-time information, and thus, the sensor 

mapping value may be subject to the changes in another dynamic 

environment. The computing work required to update each point is small, 

allowing for fast propagation of distance information from the target sites 

outward along the grid. 

 

4.4 SUMMARY 

This chapter has discussed the implementation of the proposed scheme in the 

defined robotic environment. The pseudo-steps of the proposed scheme with 

an illustration are described. The next chapter will be discussing the 

simulation parameters, software used, and the performance measures in 

continuation.  
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CHAPTER 5 

 RESULTS AND DISCUSSION 

 

The chapter portrays the outcomes and discussion of the suggested hybrid 

algorithm. In association with the previous chapters, the evaluation of the 

proposed algorithm is explained in a detailed manner.   

The Autonomy for a robotic navigation is a good research area because of the 

benefits offered to real-time applications. In general, perception, the 

navigation of the robot comprises four primary requirements, namely, 

sensitivity, positioning, perception, and route planning and controller of 

movements according to path planning. In work, path planning is the leading 

research area triggered by the use of heuristic algorithms. The conventional 

methods have leveraged the decomposition of cells, strength fields of a robot, 

sub-goals, and the road map. Though the approaches were simple, the 

challenges pertaining to this field still existed due to the expensive 

computational models and uncertainty.    

Path planning in a robot is continuous movements with the translation and 

rotation points from origin points to the target points without any obstacles. 

The paths were exploited using local and global search analysis. Generally, 

global path planning deals with the construction of high-level paths for the 

developed environment maps. It helps to achieve an optimized path; however, 

it is more prone to unknown (or) dynamic obstacles. In contrast, local path 

planning works on track construction without any prior information. Though 

it resolves the complexities of a dynamic environment, the long-distance 

target point is not effectively reached. In the area of robotic movement control, 

global path planning is mainly used for accomplishing tasks. Different path 

planning algorithms were available such as the configuration space approach, 

artificial potential approach, cell decomposition approach, intelligent control 

approach, and the sampling approach. In specific, an intelligent control 

approach is employed to attain the target points. Along with the coordination 

of 3D map generation systems, the proposed hybrid algorithm is designed and 
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tested in the dynamic robot environment. The environment simulation is 

processed out using a software platform, Matlab 18.  

5.1 ROLE OF MATLAB IN ROBOTIC ENVIRONMENT 

With the rapid advancement of the Industrial Revolution 4.0, there have been 

more efforts to maximize manufacturing processes with cost minimization 

constraints.  Industrial robots are proliferating among manufacturers in 

different regions. The recent developments made in computers have also 

enhanced the solutions to the problems related to automating industrial 

applications. The efficient algorithms were developed to overcome the 

challenges in robot development for different purposes. It could be viewed 

from the other aspects, i.e., the demanded tasks on engineering problems were 

resolved by the efficiency of the computers and the numerical steps processed 

out in the developed algorithm. The conventional systems use kinematics and 

the concept of the dynamic of robotic systems by abiding by the principles of 

analytical processes. Owing to the current technologies, the requirements of 

the uses take more complex approaches that deal with the mechanical 

problems of Coupled Mechanical System (CMS) [Alzbeta Sapetova et al. 

(2018)]. It includes variants of topology synthesis, planar mechanism, and 

other features. The examination of the numerical models with some 

algorithmic procedures is simulated and modulated according to the robotic 

constraints. Matlab, a high-level programming language, is mainly explored 

by the researchers to simulate the robotic environment in a creative approach, 

thus defining how the fittest solutions are obtained.   

It includes software packages based on the analysis of robot manipulators such 

as robot arms, vehicles, and mobile robots. It helps to resolve most of the 

kinematic and dynamic examinations over the manipulators. Nowadays, 

researchers have been investigating the intensive development of the robotic 

fields' parallel and hybrid kinematic structures. With the assistance of the 

technologies, the areas in the robotic environment are explored efficiently. 

The algorithms of intelligent management systems trigger control elements.  

 From the perspective of structural optimization, the mechanisms 

involved in the robotic systems are performed as follows:  
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i) To percept the conditions and the expediency factor of the robotic 

environment. The conditions are important in the CMS, and, on the 

other hand, the expediency factors depend on the agents that validate 

the purpose of the mechanisms.  

ii) To estimate the criteria for optimum settings. The quality of the 

agents is analyzed in order to gain the optimum constraints. 

iii) To illustrate the geometry and the variables of the dependent and 

independent systems.  It has helped to retrieve the constraint functions.  

iv) Here, every point has some draft space which is also known as draft 

variables. It helps to find out the deviation of the path trajectory.  

v) To develop a mathematical model for describing the optimization 

tasks, which is represented as,  

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐹(𝑥) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑔𝑗(𝑥) ≤ 0, 𝑗 = 1. . . 𝑚 

vi) To choose an accurate mathematical optimization method is a 

complex task. Depending on the time parameters, the optimum 

constraints tend to be dynamic variables. In some cases, arbitrary 

values are not permitted to describe the mathematical models. Thus, a 

different local search algorithm was formulated to construct the 

optimal parameters.  

vii) In addition, some technical interpretations are done and 

formulated into the language of engineers. It is employed as a real-

time application.  

5.2 RESULTS AND DISCUSSION OF THE ROBOTS IN A DYNAMIC 

ENVIRONMENT  

This section describes the simulation of the shortest path finding using 3D 

map generation concepts. Here, model-based reinforcement learning and the 

Heuristic algorithms are formulated, implemented, and tested using Matlab 
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programming. The sample result images are presented to describe the 

simulated output paths.  

 As discussed in previous chapters, the robot can move freely underneath the 

obstacles (or) it simply takes steps to understand the perceptual capabilities of 

the information presented in its surroundings. The acquisition of a reliable and 

flexible information process is a difficult job for a dynamic environment. 

Therefore, 3D environment maps were generated from the collected data, 

which has helped for an accurate range of data into the segments of planar 

coordinates. The segmented data has been used to estimate the height of the 

floor, which is further integrated with the 3D grid developed from different 

measurements. This sort of representation splits the environment of the robot 

into grids. Grid is the combination of cells presented in a row and column 

manner. Each cell possesses data about the type of environment. It comprises 

several regions like walking areas, stepping up, stepping down using stairs, 

obstacles regions include safe and unsafe objects. Therefore, the application 

of this navigation map is used for route development strategies and the 

removal of hurdles.  

To formulate the problem of robotic mapping, the basic assumptions to be 

followed. The robot has some in-built sensors that capture the data like 

position and orientation and analyzes the environment. Next, to develop the 

systems, accurate knowledge about the position and the robot's orientation are 

fed into its other coordinate systems. The below fig. 5-1 presents the 

construction of maps. Here, x denotes the position and direction of the current 

pose of a mobile device, z denotes the sensed data over a particular period, 

and m denotes the iterative mapping process for a while.   

 

Figure 5-1: Construction of the map 
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During the experiment, a 3D-based occupancy grid is employed to examine 

the robotic cells. Each element in the matrix denotes the present status of the 

cells, i.e., filled, void (or) uncovered. The below table 5-1 below presents the 

sample input data of the working environment.  

Points  Sample coordinates of data Denotation  

𝐶0 (4, 8) Origin position 

𝐶1 (9,17) Obstacle 1 

𝐶2 (14, 3) Obstacle 2 

𝐶3 (16,5) Obstacle 3 

𝐶4 (22,9) Target Position  

Table 5-1: Sample Input Data of  the working environment 

A code has been written using Matlab programming to achieve the research 

objective, i.e., to find the shortest paths. The robotic environment is 

segmented into several grids. Some points are randomly assumed as input data 

points, obstacles points, and output data points. With the help of these points, 

the resultant paths are created by learning the movements of the cells using 

the Q- Learning algorithm.  

The paths were generated using the Bellman equation and the Markov 

Decision process of the Q-learning algorithms. The obtained paths were not 

optimal due to the invasion of obstacles. These obstacles were explored in 

sequential order. Thus, a possible combination of the data points was 

estimated for the obtained data points. Here, the origin and the target points 

were set to be static. The obstacles are set to be dynamic by nature. The main 

goal of this experimentation is to discover the fittest path from the set of 



65 
 

possible combinations of data points (or) in response to the formulated 

obstacles.  

Before moving into path generation analysis, let us discuss the assumptions 

made in the dynamic robotic environment. The followings are the rules of the 

robots while incorporating them into the dynamic environment.  

a) Dynamic environment: The sensing area is unknown (or) unstructured. 

b) Restricted communication: Direct communication between robots is 

not possible.  

c) Restricted sensing: Low-cost sensing devices are equipped with 

robots. 

In order to make an efficient sequence of decisions, this algorithm takes trial 

and error on the defined parameters. The deployed robots initiate the working 

process by just learning the environment via the reward and penalty process. 

Here, the selected action is accurate, and then the learned data is represented 

as ‘reward.’ Else it is labeled as ‘penalty.’ The Markov Process does this 

learning process, and thus, decisions made from this process is known as 

‘Markov Decision Process.’ Once the cells are examined, it is marked as 

visited. Based on the cells' status, the cell's action is labeled with reward (or) 

penalty.  
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

S1 0 0 0 0 0 0 x 0 100 0 

S2 0 0 0 0 0 0 x 0 1 0 

S3 0 0 0 0 0 0 x 1 1 0 

S4 0 0 0 0 1 1 x 1 1 0 

S5 0 0 0 1 1 1 1 1 1 0 

S6 0 0 0 1 x 1 1 1 1 0 

S7 0 0 0 1 x 0 0 0 0 0 

S8 0 0 0 1 x 0 0 0 0 0 

S9 0 x x 1 x 0 0 0 0 0 

S10 0 1 1 1 x 0 0 0 0 0 

Table 5-2 Reward Table for MAP 8 
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 

S1 1 1 1 x 0 x 0 x x 1 1 

S2 1 x 1 x 0 x 0 x x 1 1 

S3 1 x 1 x 0 x 0 x x 1 x 

S4 1 x 1 x 0 x 0 x x 1 x 

S5 1 x 1 x 0 x 0 x x 1 x 

S6 1 x 1 x 1 x 1 x 1 x x 

S7 1 x 1 x 1 1 1 x 1 x x 

S8 1 x 1 x 1 1 x x 1 x x 

S9 1 x 1 1 1 1 1 x 1 x x 

S10 1 x x 1 1 x x 1 x x x 

Table  5-3: Reward Table for MAP 10 
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

S1 0 0 0 0 0 0 0 1 1 100 

S2 1 1 1 1 1 1 1 1 1 1 

S3 1 1 1 1 1 1 1 1 1 1 

S4 1 1 x x x x x x 0 0 

S5 1 1 x 0 0 0 0 x 0 0 

S6 1 x x 0 0 0 0 x x x 

S7 1 x x x x x 0 x 0 0 

S8 1 1 x 0 0 x x x 0 0 

S9 1 1 1 0 0 0 0 0 0 0 

S10 1 1 1 0 0 0 0 0 0 0 

Table 5-4: Reward Table for MAP 12 
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

S1 0 0 0 0 0 0 0 1 1 100 

S2 1 1 1 x 1 1 1 1 1 1 

S3 1 1 1 1 1 1 1 1 1 1 

S4 1 1 x x x x x x 0 0 

S5 1 x x x x x x x 0 0 

S6 1 x x x x x x x x x 

S7 1 1 x 0 x x x x 0 0 

S8 1 x x x 0 x x x x x 

S9 1 1 1 x x 0 0 0 0 0 

S10 1 x 0 0 0 0 0 0 0 0 

Table 5-5: Reward Table for MAP 14 
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 

S1 0 1 1 1 1 1 x 1 1 1 1 x 1 1 1 1 x 1 1 100 

S2 1 x x 1 x 1 1 1 1 x 1 1 1 1 x 1 x x 1 x 

S3 1 x x x x x x x x x x x x x x 1 1 x 1 1 

S4 1 x 0 x 0 x 1 1 1 1 1 1 1 1 x x 1 x 0 x 

S5 1 x 0 x 0 x 1 x x x x x x 1 1 x 1 1 1 0 

S6 1 1 1 1 1 1 1 x 0 0 0 0 x x 1 x 0 0 0 0 

S7 x x x x x x x 0 1 1 1  0 0 x 1 x x 0 0 0 

S8  0 1 1 1 1 1 1 x  1 x 1 x 0 x 1 x 0 x 0 x 

S9  0 1 1 1 1 1 1 x 1 x 1 x 0 x 1 x x x x x 

S10 x 1 x x x x 1 x 1 x 1 x 0 x 1 x 0 0 0 x 
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S11 0 1 x 1 1 x 1 x 1 x 1 x 0 x 1 x 0 0 0 x 

S12 0 1 1 1 1 x 1 0 1 x 1 x 0 x 1 x 0 0 0 0 

S13  0 1 1 1 1 x 1 1 1 x 1 0 0 x 1 0 0 x 0 0 

S14 0 1 1 x 1 x x x x x 1 x x x 1 x 0 x 0 0 

S15 x x x x 1 x 0 1 1 1 x 0 1 1 x x x 0 0 0 

S16 0 0 1 1 1 x 0 1 x x x x 1 x 0 x 0 0 0 x 

S17 0 0 1 1 1 x 1 1 x 1 1 1 1 x 0 0 0 0 0 0 

S18 0 1 1 x x x 1 x x 1 0 0 x x 0 x 0 x 0 x 

S19 1 1 1 x 0 0 1 x x 1 x x x 0 0 0 0 0 0 0 

S20 1 1 1 x 0 0 1 1 1 1 x 0 0 0 0 x 0 0 0 x 

Table 5-6: Reward Table for MAP 20 
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The above tables 5-2-5-6 present the rewards for the given state and the 

actions for maps 8,10,12,14, and 20. Initially, a default map shows the current 

state and the robot's actions at the stipulated period t. The reward table is also 

known as the ‘Q-table.’ In this approach, the Q-learning algorithm has helped 

to have insights into the unknown robotic environment. This information 

about the state and action of the cells will be viewed as collecting the data for 

the training by means of the Q-learning algorithm. The estimation of reward 

value portrays the robust learning model that enhances the performance of the 

system. Likewise, the discount factor helps estimate the data by an agent, 

which is greatly helpful to deal with the shortest path planning. It reduces the 

effects of data overfitting.  

After finding the robot's current position via cellular automata and Q-learning 

systems, a training database is created. In order to ease the success rate of the 

defined objectives, a set of paths is generated based on the reward table.  Since 

the setting is projected interested in a lattice of cells, each cell contributes as 

a learning component. During the learning process, the best actions are 

learned to recommend the neighboring components for further actions. This 

type of analysis is known as the reinforcement learning model. It camanage 

all kinds of actions and preserve the time and space complexity of the 

environment. Now, the possible set of actions, the shortest paths are 

generated. Here, 20 maps were generated using 3D map generation systems. 

Out of 20 maps, some maps hold the optimal set of actions, i.e., Map 8, Map 

10, Map 12, Map 14, and Map 20. For these maps, the evaluation of the fittest 

shortest paths and their time consumption rate is explored.  

Path planning is carried out on some barrier constraints, which are known as 

obstacles. With the help of discrete steps of time, the robots can navigate on 

the planned paths. Likewise, the learning rate is defined to be less than the 

sensing range of the sensor associated with the robot. At each step, robots look 

for the availability of obstacles in the navigation process. Along with that, the 

position of the obstacles is also estimated and updated. If the robot finds any 

obstacles with its distance step, then the cuckoo search model suggests a new 

obstacles free path.  
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Here, the point of the obstacle and the present location of the machine is 

declared as the preliminary point. The track planned is sandwiched between 

the new initial point and the destination point in connection with new 

intermediate points. Then, an optimal distance value is estimated if the robot 

does not face any obstacles during the navigation process.  Below table 8.7 

presents the various combinations of the obstacles on the generated paths 

using Q learning with Cellular Automata.  

 

Data points Combinations 

 C0,C1, C2, 

C3 &C4 

1 2 3 4 5 6 

C0 C0 C0 C0 C0 C0 

C1 C2 C1 C1 C2 C2 

C2 C3 C1 C1 C3 C2 

C3 C2 C3 C1 C2 C1 

C4 C4 C4 C4 C4 C4 

Table 5-7 Obstacles Combination on generating the paths 

 

 With the above table 5-7, the total length from the origin to the target points, 

i.e., C[u], is estimated using Euclidean distance value. The resultant paths are 

generated according to the Bellman equation in Markov Decision Process 

(MDP). The mapping point on the map has been obtained from the 

neighboring cells. The current data in each cell point is the estimation between 

the target point and the coordinating points determined by the Euclidean 

distance values. Based on the updated distance value from the obtained 

information, it has helped the coordinating points. Thereby, it is concluded 
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that the computation process is independent by the nature of arrangements of 

the grid points. The current order of the updated grid points gives the global 

knowledge of the current and previous grid points. Likewise, the path of the 

robots is estimated from its real-time information, and thus, the sensor 

mapping value may be subject to the changes in another dynamic 

environment. A combination of 20 Maps was generated, and the sample map 

values are explored. The robots are observed under the Markov Decision 

Process. Here, ten states and ten actions are commonly employed to observe 

the robots' motion to reach the target points.  Each mapping point on the map 

has been estimated from its local association with the neighboring cells. The 

preserved data in each cell point is the present computation between the target 

point and the neighboring points. Its distance determines it. The information 

being updated by distance as well as grid point has helped the neighboring 

points. Thereby, it is concluded that the computation process is independent 

by the nature of arrangements of the grid points. The current order of the 

updated grid points gives the global knowledge of the current and previous 

grid points. Likewise, the path of the robots is estimated from its real-time 

information, and thus, the sensor mapping value may be subject to the changes 

in another dynamic environment. The computational work required to update 

each point is small, allowing for quick propagation of distance information 

from the goal position outward along the grid. 
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Map No. Distance traveled by the robots  per cell 

8 15 

10 17 

12 38 

14 31 

20 129 

Table 5-8: Distance Traveled by the robots 

From table 5-8, it is inferred that the estimated euclidean distance of the 

generated paths ranges between 14 to 130m. The generated map takes the least 

distance values to perform the navigation task since these values are estimated 

by the sum of the distance taken from an origin point to reach the target points 

despite all obstacles using Cellular Automata-based Q-learning systems.   

The confusion matrix derived for the selected maps, which proves the 

accomplishment degree of the proposed procedure.  It is the size of  n * n 

matrix that defines the decision to take an exact path and the observed path, 

when the target's position is altered. Here, n is the count of successively taken 

routes. Initially, the success rate of the estimated routes engaged by the robots 

to reach the destination point is given in the table below 5-9 and 5-10. 
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 Q-learning with CA(Existing) Q-learning with CA & cuckoo 

(proposed) 

 Map 

8 

Map 

10 

Map 

12 

Map 

14 

Map 

20 

Map 

8 

Map 

10 

Map 

12 

Map 

14 

Map 

20 

Target 1 42 1 2 2 3 50 0 0 0 0 

Target 2 2 40 3 2 3 1 47 1 0 1 

Target 3 2 2 39 3 4 0 1 47 0 2 

Target 4 2 2 2 41 3 1 0 0 47 2 

Target 5 2 3 3 5 37 1 1 1 1 46 

Table 5-9: Success Matrix for Q-learning between the existing 

and the proposed model 

 

Table 5-9 represents the success matrix. Here, it defines the shortest route 

taken by the deployed robots when the position of the targets is altered. There 

are five target points assumed in the experiment. When target one is taken as 

input, the shortest path in Map 8 has assisted the robots to reach it. Likewise, 

target two as input makes use of Map 10 than Map 8, 12,14, and 20. Here, the 

values in the table represent the success count of the robots to accomplish the 

tasks.    
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 Q-learning with CA(Existing) Q-learning with CA & cuckoo 

(proposed) 

 Target 

1 

Target 

2 

Target 

3 

Target 

4 

Target 

5 

Target 

1 

Target 

2 

Target 

3 

Target 

4 

Target 

5 

Map 

8 

0.84 0.02 0.04 0.04 0.06 1 0 0 0 0 

Map 

10 

0.04 0.8 0.06 0.04 0.06 0.02 0.94 0.02 0 0.02 

Map 

12 

0.04 0.04 0.78 0.06 0.08 0 0.02 0.94 0 0.04 

Map 

14 

0.04 0.04 0.04 0.82 0.06 0.02 0 0 0.94 0.04 

Map 

20 

0.04 0.06 6 0.1 0.74 0.02 0.02 0.02 0.02 0.92 

Table 5-10: Confusion Matrix between the existing and the 

proposed model 

Table 5-10 represents the confusion matrix for the above-explored success 

matrix. Here, the value 1 dictates the equalized actual and observed shortest 

paths; value 0 represents the maps that do not use the varied target & floating 

values representing the error values, i.e., deviated paths taken by the robots. 

It is measured in terms of True Positive (TP) and False Negative (FN), 

estimated from the success matrix. True Positive (TP)  measures the success 

rate of correctly reaching the targets for the given Maps; False Positive (FP) 

measures the success rate of incorrectly reaching the targets that were 

incorrectly labeled with the wrong set of maps. True Negative (TP) measures 

the success rate of incorrectly reaching the targets for the correct set of Maps 

& False Negative (FN) measures to reach the target points erroneously labeled 

as wrong maps correctly. Here, there are five maps and five target points in 

which each map consists of 10 states and ten actions discussed in the earlier 

section.   
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In the work, the robots are deployed in an unknown environment by giving 

prior information of their origin point. With the help of built-in sensors, the 

task of the deployed robot is to select the paths to attain the target position 

intelligently, irrespective of its environment, i.e., known (or) unknown 

environment. Initially, the cells are divided into grid forms. Each grid consists 

of 20 cells.  The built-in sensors of the robot sense these cells. During the 

central placement of the robots, the cells of an entire area are covered. 

Along with that, it is also assumed that the range of the robot’s sensor is 

capable of recognizing the obstacles in the three-dimensional orthogonal view 

of the neighboring cells. During robots in a cell, an individual spanning tree 

is administered for each exploration process of a cell. The present location of 

the cell is fed as input to the process, and the output is the spanning tree of 

that robot. Since it scans by orthogonal views, all the robots, i.e., walking 

style, step up, step down, and idle movements, are keenly observed.   

Time consumption analysis is the performance measure explored in work. 

Several studies have explored optimizing robot path planning strategies. 

However, the operation time is not mainly concentrated by the researchers. 

The reduced time consumption has shed light on providing a better energy 

utilization rate, which is relied upon by the actions taken by the robots. 

Practical action on the unknown robotic environment has significantly 

reduced the time taken for building the paths. The multiple robots were 

deployed in an unknown environment, and therefore, the efficient analysis of 

discovering the fittest shortest paths is determined by the time consuming, 

which is implemented here. Generally, the deployment of a single robot will 

not bring any challenges to the environment, whereas deploying a multi-robot, 

the challenges like collisions, computation overheads, and the heavy time is 

taken to reach the target position. There are several motivations for on-time 

analysis of multi-robot systems. 

The navigation of mechanical device is complex by nature, even for solitary 

robotic systems. For multi-robot systems, robots' movements become more 

and more complex, which demands the parallel execution of transportation 
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loads. Even though some tasks are monotonous, the execution of parallel 

processing has exposed irrelevant consumption of resources. To improve the 

robustness and flexibility of the robotic systems, the need for optimal 

resources and optimal time have a prominent part in the accomplishment level 

of the robotic applications. The thesis covers the issues of geometric pattern 

formation, terrain coverage, and task decomposition and allocation. With the 

help of cellular automata, the coverage issue has been resolved. In 

continuation with this, the Q-learning algorithms explore issues of geometric 

pattern formation and the optimal actions of the deployed. The above tables 

have shown the results and analysis of the cellular automata-based Q-learning 

algorithm. The shortest paths are computed and explored by the distance taken 

from origin and target position from the given set of planned paths. Here, 

optimality refers to the time consumed by the robots. On proceeding to this, 

the upcoming screenshots present the working of the cuckoo search algorithm.   

The simulation constraints of cuckoo search algorithms are fed into the Matlab 

environment.  The population of the cuckoos taken here is 10. Each cuckoo 

operates by knowing its map, current position, and target position. Along with 

the initial iteration starts, the time step is set to 0.1 sec. The variable, sbest, 

preserves the best solution of that particular iteration and its time step. The 

cuckoos are exploited in the robotic environment with their input variables by 

implementing the levy flight behavior.  It performs random walks on the 

environment until the termination criteria are reached. The below figures 

portrays the working of each map. 
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(a) Target 1 

 

(b) Target 2 
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(c) Target 3 

 

(d) Target 4 
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(e) Target 5 

Figure 5-2: Working of  MAP 8 for different target positions 

The above fig. 5-2 represents the performance of Map 8. By varying the 

targets, the performance of the map is also discussed. With the help of a 

reward table, the robots take 5.66sec to reach target points as training data.   

                

 

(a) Target 1 
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(b) Target 2 

 

 

(c) Target 3 
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(d) Target 4 

 

 

(e) Target 5 

 Figure 5-3: Working of  MAP 10 for different target positions 

The above fig. 5-3 represents the working of map 10. It is inferred that the 

map10 takes 7.23sec.   
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(a) Target 1 

 

(b) Target 2 
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(c) Target 3 

 

(d) Target 4 
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(e) Target 5 

Figure 5-4: Working of  MAP 12 for different target positions  

Above figure 5-4 represents the working of Map 12, which consumes 8.45 

sec. As time moves on, the decompositions of the cells are modulated in 

accord with the mapping environment.  

 

(a) Target 1 
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(b) Target 2 

 

(c) Target 3 
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(d) Target 4 

 

(e)  Target 5 

Figure 5-5:  Working of MAP 14 for different target positions 

 



90 
 

The above fig.5-5 represents the working of map 14, which takes 9.37 secs.  

  

 

(a) Target 1 

 

(b) Target 2 
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(c) Target 3 

 

(d) Target 4 
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(e) Target 5 

Figure 5-6: Working of  MAP 20 for different target positions. 

The above fig.5-6 represents the working of map 20, which takes 12.13 secs. 

By following the grid-based decomposition model, the chance of interference 

(or) collision is eliminated from this system that has improved the efficiency 

and the robustness of the deployed robots for quick navigation. Once the 

segmentation of the unknown environment is approximately analyzed and 

decomposed under a balanced process has paved the way for robots to 

differentiate the areas between the obstacles and the non-obstacles regions. 

Thus, the multi-robot can efficiently navigate by its parallel execution of 

tasks. In the aspects of scalability, finding the fittest shortest paths under 

reduced time can easily accommodate the data operations of the robots. The 

use of cuckoo search algorithms has significantly utilized the given resources. 

Along with that, task allocation and the speed of the robots are also assured. 

The help of the Q-learning algorithm easily completes the assigned tasks 

completed by the robots using training data.   

Table 5-10 represents the confusion matrix for the above-explored success 

matrix. Here, the value 1 dictates the equalized actual and observed shortest 

paths; value 0 represents that the maps do not use the varied target & floating 

values representing the error values, i.e., deviated paths taken by the robots. 
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After that, figures 16 to 20 signifies the comparative graphical visualization 

between the target points and the error obtained during navigation. From the 

confusion matrix discussed above, different statistical parameters can be 

calculated to evaluate two algorithms, i.e., Q-learning and SAARTHI. Table 

5-11 below illustrates the various parameter values assessed from their 

respective matrices. 

Statistical parameters Q-learning  SAARTHI 

Accuracy 
0.907357 

 

0.975541 

 

Error Rate 
0.092643 

 

0.024459 

 

Sensitivity/Recall 
0.796 

 

0.948 

 

Specificity 
0.940071 

 

0.98401 

 

Precision 
0.796 

 

0.948 

 

F-measure 
0.795854 

 

0.948 

 

Table 5-11: Comparative Analysis of Q-learning and SAARTHI 

Algorithm 
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          Figure 5-7: Target Points Vs. Error in Path Selection for MAP 8 

 

Figure 5-8: Target Points Vs. Error in Path selection for MAP 10 
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Figure 5-9: Target Points Vs. Error in Path Selection for MAP 12 

 

 

Figure 5-10: Target Points Vs. Error in Path Selection for MAP 14 
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Figure 5-11: Target Point Vs. Error in Path Selection for MAP 20 

During the simulation, the robots are deployed in an unknown environment 

by giving prior information of their origin point. With the help of built-in 

sensors, the task of the deployed robot is to intelligently select the paths to 

attain the target position, irrespective of its environment, i.e., known or 

unknown environment. Initially, the cells are divided into grid forms. Each 

grid consists of 20 cells.  The built-in sensors of the robot sense these cells. 

During the central placement of the robots, the cells of an entire area are 

covered. 

Also, assumption for the range of the robot’s sensors capability of recognizing 

the obstacles in the three-dimensional orthogonal view of the neighboring 

cells. During robots in a cell, an individual spanning tree is administered for 

each exploration process of a cell. The present location of the cell is taken as 

input to  algorithm, and output is the spanning tree of that robot. Since it scans 

by orthogonal views, all positions of the robots, i.e., walking style, step up, 

step down, and idle movements, are keenly observed.  

Time consumption analysis is the performance measure explored during the 

implementation. The literature shows that the field of optimizing robot path 

planning strategies. However, the researchers do not mainly concentrate on 

the operation time. The reduced time consumption has shed light on providing 
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a better energy utilization rate, which is relied upon by the actions taken by 

the robots. Practical action on the unknown robotic environment has 

significantly reduced the time taken for building the paths. The multiple 

robots are being deployed in an unknown environment, and therefore, the 

efficient analysis of discovering the fittest shortest paths is determined by the 

time consuming, which is executed here. Generally, the deployment of a 

single robot will not bring any challenges to the environment, whereas 

deploying a multi-robot, the challenges like collisions, computation 

overheads, and the heavy time is taken to reach the target position. There are 

several motivations for the time analysis of multi-robot systems. A 

comparative table between Q-learning and the proposed algorithm is 

illustrated further. 

Maps Q-learning (Existing) SAARTHI (Proposed 

Algorithm) 

8 7.11s 5.66s 

10 8.07s 7.23s 

12 9.43s 8.45s 

14 11.03s 9.37s 

20 13.54s 12.13s 

Table 5-12: Time Consumption for Q-learning and SAARTHI 

Algorithm 

The increment in the number of obstacles and the distance covered increases 

the time complexity. The total number of obstacles increases from map 8 to 

map 20. Thus, it is concluded from the above result, with the increase in grid 

size and an increase in the number of obstacles, time increases in order to 

approach the destination point. The results discussed above shows that the 

projected (SAARTHI) algorithm proves to be better than the existing Q-
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learning algorithm. The proposed method shows 97.5% accuracy, whereas Q-

learning gives 90.7% accuracy for the same stimulating environment. 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

6.1 Conclusion 

The following is a deduction of the thesis. A literature work from the past was 

accomplished. During the survey, a wide variety of algorithms were studied 

for autonomous navigation. The algorithms were having both limitations as 

well as advantages for the different simulating environments.  In the research 

work, a hybrid algorithm for autonomous navigation was proposed. The study 

concludes that by following the grid-based decomposition model, the chance 

of interference (or) collision is eliminated from the system that has improved 

the efficiency and robustness of the deployed robots for quick navigation. 

Once segmentation of unknown environment is approximately analyzed and 

decomposed under a balanced process, it has paved the way for robots to 

differentiate between the obstacles and the non-obstacles regions. Thus, the 

multi-robot can efficiently navigate by its parallel execution of tasks. In the 

aspects of scalability, finding the fittest shortest paths under reduced time can 

easily accommodate the data operations of the robots. The use of cuckoo 

search algorithms has significantly utilized the given resources. The proposed 

SAARTHI algorithm provides better simulation results compared to the 

existing Q-learning algorithm.  

6.2 FUTURE SCOPE 

The presented model is based on the reinforcement concept for direction 

finding and route mapping in an unidentified environment. The proposed 

model can be extended further for automation in the industrial revolution. 

Wide applications such as Mars rovers, driverless cars, automated machines 

where the environment is not known can be the comprehensive research of the 

thesis. 
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