Name: Enrolr			
	Enrolment No: UNIVERSITY WITH A PURPOSE UNIVERSITY OF PETROLEUM & ENERGY STUDIES End semester Examination – May, 2021 Course: Optimization Modelling for LSCM sector Semester: II Subject/: MBA LSCM		
Subjec	Subject/: MBA LSCMTime: 3 HCourse Code: LSCM 7015Max. Max		3 Hours
2. Inst	h Question will carry 5 Marks ruction: Complete the statement / Sele		
S.No.	Question		COs
Q 1	decision making		CO2
	· · · · · · · · · · · · · · · · · · ·		
Q 2	objective function value per unit increases the	se to a right hand side of a constraint is called	
	a) Shadow Price	d) Feasible solution	
Q 3	Range of optimality is	_ and range of feasibility is	· CO1
Q 4		amming solution are,	CO3
Q 5	The various types of symbolic models	are, and	CO2
Q 6	 What if analysis in spreadsheet compris a. Goal seek b. Scenario Manager c. Data Table d. Conditional Formatting 		CO1
	h question will carry 10 marks ruction: Solve the numerical problems	SECTION B	

Q 7	What is a linear progr	amming mod	el? How do y	you solve the	model using g	graphical	CO1
Q 8	technique? A department of a common in hours that each many Jobs/Employees A B C D E						CO2
	Formulate the problem using LP standard form. How should the jobs be allocated, one per employee, so as to minimize the total man hours?						
Q 9	Use Simplex method x Max $Z = x_1 + x_1 + x_2$ Subject to the i) $3x_1 + 3x_1 + 3x_2$ ii) $x_1 + 2x_2$ iii) $3x_1 + 2x_2$ and $x_1, x_2, x_3 > 3x_2$	$4x_2 + 5x_3$ constraints $3x_2 <= 22$ $x_2 + 3x_3 <= 14$ $2x_2 <= 14$	-	problem			CO4
Q 10	Solve the following in Max $Z = 5x_1 + 3x_1 + 3x_2 = 5x_1 + 5x_2 = 5x_2 = 5x_2 = 5x_2 = 5x_2 = 5x_$	- 4x ₂ constraints 5		em using bran	ch and bound	l method	CO3
Q 11	ii) $3x_1 + x_2$	$600x_1 + 400x_2$ constraints $8x_2 \ge 40$ $8x_2 \ge 40$ $8x_2 \ge 40$ $8x_2 \ge 40$	2				CO2
	h Question carries 20 ruction: Answer any o		Sectio from the an		tions		

1. Determine the initial basic feasible solution to the following transportation problem by using Least cost method and optimal distribution that minimize total shipping cost through Modi method.

	D1	D2	D3	D4	Supply
S1	21	16	15	3	11
S2	17	18	14	23	13
S3	32	27	18	41	19
Demand	6	10	12	15	

Q 12 $\begin{vmatrix} OR \\ 2 \end{vmatrix}$

CO4
 2. Consider the following trans-shipment problem with two sources S1 and S2, and three destinations D1, D2 and D3. The number of units available in S1 and S2 are 100 and 200 and the product demanded at D1, D2 and D3 are 100, 100 and 100 units respectively. The cost of shipments is given. Determine the initial feasible solution through Vogel's Approximation Method.

		Source		Destination		
		S 1	S2	D1	D2	D3
	S1	0	80	10	20	30
Source	S2	10	0	20	50	4(
	D1	20	30	0	4	10
	D2	40	20	10	0	20
Destination	D3	60	70	80	20	0