Note: - Pl. start your question paper from next page

Name:					
Enrolment No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
Online End Semester Examination, May. 2021Programme Name: B. Tech (Mechanical Engineering)SemesterCourse Name: Steam & Gas turbinesTimeCourse Code: MEPD 4004PMax. MaNos. of page(s):2Instructions: Attempt all questionsSemester		: VIII : 03 hrs rks: 100			
1. Each ques	SECTION SECTION SECTION	N A			
S. No.			СО		
b. I	Describe work and heat interaction between f 50 J of energy is added to a system that do vill the internal energy of that system be ra	bes no external work, by how much	CO1		
ii). The p quality iii) Symm	c.) Pressure –Velocity compounded turbine urbine PRESSURE VELOCITY VELOC	 b.) Velocity compounded d.) Pressure compounded b.) ressure compounded b.) reheat the steam and improve its d.) maintain the speed of the turbine egree of reaction is 100% 	CO1		

	c.) steam and cooling water mix. d.) steam and cooling water do not mix.	
	 v). The blades of a reaction turbine are a.) Aerofoil type & asymmetrical b.) Flat type & asymmetrical c.) Aerofoil type & symmetrical d.) Flat type & symmetrical 	
Q3.	Describe super heating, reheating and regenerative feed water heating.	CO1
Q4.	Explain barometric condenser	C01
Q5.	Explain flying bomb of propulsion system	CO1
Q6.	Explain the effects of super saturation and its phenomenon.	CO1
	SECTION B	
All q	uestion carries 10 marks	
Q1.	A steam generator comprises a boiler, a super heater, an economiser at 140° C and leaves as saturated liquid. Air is preheated from a temperature of 25° C to 250° C. Steam leaves the boiler drum at 60 bar, 0.98 dry and leaves the super heater at 450° C. When using coal with a calorific value of 25.2 MJ/kg, the rate of evaporation is 8.5 kg steam per kg coal and the air fuel ratio is 15:1 by mass. Neglecting heat losses and pressure drops, estimate the heat transfer per kg of fuel in each component and the efficiency of the steam generator. What are the percentages of the total heat absorption taking place in the economiser, boiler and the super heater, respectively? Assume Cp of air and water as 1.005 and 4.2kJ/kg K; respectively	CO2
Q2.	The nozzles of the impulse stage of a turbine receive steam at 17 bar and 320°C and discharge it at I.1 bar. The nozzle efficiency is 93% and the nozzle angle is 19°. The blade speed is that required for maximum efficiency and the entry of steam to the blades is without shock. The blade exit angle is 4° less than the blade inlet angle. The blade velocity coefficient is 0.93 and the steam flow rote is 1390 kg/h. Calculate (a) the diagram power, and (b) the stage efficiency.	CO2
Q3.	Derive the condition for maximum efficiency of a Reaction turbine is $\dot{\eta}_{max} = 2 \cos^2 \alpha / 1 + \cos^2 \alpha$	CO2
Q4.	Air is drawn in a gas turbine unit at 17^{0} C and 1.02 bar, pressure ratio is 8:1 the compressor is driven by the H.P turbine, and L.P turbine drives a separate power shaft. The isentropic efficiency of compressor and the H.P and L.P turbines are 0.85, 0.85 and 0.85 respectively. If the maximum cycle temperature is 690^{0} C, calculate: The pressure and the temperature of gases entering the power turbine, The net power developed by the unit per kg/s mass flow, The work ratio, Thermal efficiency of the unit, For compression $C_{pa}=1.008$ kJ/kg k and $y=1.41$ For combustion and expansion process $C_{p}=1.18$ kJ/kg k and $y=1.444$	CO3

Q5.	Explain governing of a steam turbine and Describe any two method of governing for turbines. OR Explain the different losses in turbines.	CO3
	SECTION C Each Question carries 20 Marks.	
Q1.	A gas turbine employs a heat exchanger with a thermal ratio of 75%. The turbine operates between the pressure of 1.02 bar and 4.07 bar and ambient temperature is 20 ⁰ C. Isentropic efficiencies of compressor and turbine are 85% and 85% respectively. The pressure drop on each side of the heat exchanger is 0.06 bar and in the combustion chamber 0.16 bar. Assume combustion efficiency to be unity and calorific value of the fuel to be 41800 kJ/kg. Calculate the increase in efficiency due to heat exchanger over that for simple cycle. Assume C _P is constant throughout and is equal to be 1.024 kJ/kg K, and assume $y = 1.41$. For simple cycle the air – fuel ratio is 93:1, and for the heat exchange cycle the turbine entry temperature is the same for a simple cycle. OR i. At a stage of a reaction turbine, the rotor diameter is 1.5 m speed ratio 0.8. If the blade outlet angle is 20 ⁰ and the rotor speed 3500 r.p.m., find the blade inlet angle and diagram efficiency. Also find the percentage increase in diagram efficiency and rotor speed. if the turbine is designed to run at the best theoretical speed. (15 M) ii. Explain working procedure of athodyd jet with schematic diagram. (5 M)	CO3