Name:			UPES		
Enrolment No:		S SAP ID:	UNIVERSITY WITH A PURPOSE		
	se: Advanced Theory of Machines	mination, May, 2021	Semester: V		
Cours	Program: B.Tech – MechanicalTime: 3 hoursCourse Code: MECH4024PMax. Marks: 10No. of Pages: 02Max. Marks: 10				
Note: 1. 2. 3. 4.	The paper consists of 3 sections A, B and C. For Section A, type your answers in the browser of For Sections B and C, scan and upload your answ				
	Sect	ion A			
Q1.	Define centrode of a body. Mention its types.			5	CO1
Q2.	Define following terms: a. Kinematic Mechanism b. Kinematic chain c. Degree of freedom d. Lower pair e. Higher pair			5	CO1
Q3.	Explain the terms sensitiveness and hunting of a go	vernor.		5	CO1
Q4.	Define the terms coefficient of fluctuation of energy as applied to flywheel.	gy and coefficient of fluct	uation od speed	5	CO1
Q5.	Explain Bobillier theorem as applied to accelerati	on analysis.		5	CO1
Q6.	Explain the principle of virtual work.			5	CO1
	Sect	ion B			
Q7.	Each arm of a Porter governor is 250 mm long ar mass of each ball is 5 kg and the sleeve is 25 kg. T of rotation of the balls is 150 mm and reaches the sleeve is equivalent to 10 N, determine the range and power.	The sleeve begins to rise top when it is 200 mm.	when the radius If the friction at	10	CO3
Q8	Design a four-link mechanism to coordinate three links given by $\theta_1 = 25^\circ \varphi_1 =$ $\theta_2 = 35^\circ \varphi_2 =$ $\theta_3 = 50^\circ \varphi_3 =$	= 30° = 40°	and the output	10	CO2
Q9	Determine the torque required to be applied to the link maintain the static equilibrium if $F = 100$ N. The le each link in mm.	AB of the linkage shown i	Ũ	10	CO3

Т

			700 450	$F = CD = 650 \\ DE = 500 \\ 650 \\ 0 \\ A = 300 \\ T \\ (mm)$	D			
Q10	 A machine is coupled to a two-stroke engine which produces a torque of (800 + 180 sin 3θ) N.m, where θ is the crank angle. The mean engine speed is 400 rpm. The flywheel and the other rotating parts attached to the engine have a mass of 350 kg at a radius of gyration of 220 mm. Calculate the (i) Power of the engine (ii) Total percentage fluctuation of speed of the flywheel. 						10	CO3
Q11	Derive the expressions for velocity and acceleration of a piston						10	CO3
				Section C				
Q12	While balancing a turbine rotor by the field balancing, the results obtained are shown in table below. Determine the correct balance masses to be placed in planes A and B at the same radii as for the trail masses. Also, determine the angular positions of the balance masses with respect to the trail masses to have the complete dynamic balance of the rotor.Plane APlane BNo.Trial mass (kg)AmplitudePhase angleAmplitude					20	CO4	
	INO.	Trial mass (kg)	-	U	-	0		
			(mm)	(degrees)	(mm)	(degrees)		
	1.	0	(mm) 3×10^{-3}	(degrees) 25	(mm) 5×10^{-3}	(degrees) 70		
			(mm)	(degrees)	(mm)	(degrees)		