Name: Enrolment No:	¢ ¢ ES
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May-2021	
Program Name: B.TECH-ME	Semester : VIII
Course Name : Modeling and Simulation	Time : 03 hrs .
Course Code : MECH4006P	Max. Marks: 100
Nos. of page(s) : 02	

SECTION A (30 Marks)

1. All questions are compulsory in this section.
2. Total 06 questions are there in this section and each question is of $\mathbf{5}$ Marks.
3. Short answer type questions.

S. No.	$\mathbf{\text { Marks }}$				$\mathbf{C O}$
Q1	Discuss various attributes characterizing a system by taking suitable example of any engineering system.	$\mathbf{5}$	$\mathbf{C O 1}$		
Q2	Categorize the implications of the system concept.	$\mathbf{5}$	$\mathbf{C O 1}$		
Q3	Deliberate mathematical modelling and state its importance.	$\mathbf{5}$	$\mathbf{C O 2}$		
Q4	Analyze Saddle point approach for the following function $f(x, y)=x^{2}-y^{2}$. Predict local maximum and minimum for the function.	$\mathbf{5}$	$\mathbf{C O 3}$		
Q5	Elaborate Kuhn-tucker Condition in optimization of multivariable problem having inequality constraints.	$\mathbf{5}$	$\mathbf{C O 5}$		
Q6	Articulate pitfalls of simulation approach.	$\mathbf{5}$	$\mathbf{C O 5}$		

SECTION B (50 Marks)

1. All questions are compulsory in this section.
2. Total 05 questions are there in this section and each question is of $\mathbf{1 0}$ Marks.
3. Write brief notes.

Assume any missing data if required.

Q1	In a heat treatment process, a metal cube of side 2 cm , density $6000 \mathrm{~kg} / \mathrm{m} 3$, and specific heat $300 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$ is heated by convection from a hot fluid at temperature Tf =2200C. The initial temperature of the cube is, $\mathrm{Ti}=200 \mathrm{C}$. If the temperature T within the cube may be taken as uniform, write down the equation that governs the temperature as a function of time $\tau(\mathrm{sec})$. Obtain the general form of the solution. If the measured Temperature values at different time intervals are given as
$\left.\begin{array}{lllll}\tau(\mathrm{min}) & 0 & 0.5 & 1.0 & 2.0\end{array}\right]$	
$\frac{T-T f}{T i-T f}$	1

	Obtain a best fit to these data using information from the analytical solution for $\mathrm{T}(\tau)$. Sketch the resulting curve and plot the original data to indicate how good a representation of the data is obtained by this curve. From the results obtained, compute the heat transfer coefficient h.		
Q2	Apply the concept of constraint surfaces develop a hypothetical two dimensional design space. Discuss applicability and non-applicability of this approach too.	$\mathbf{1 0}$	$\mathbf{C O 4}$
Q3	Compare different types of simulation approach with suitable example of each.	$\mathbf{1 0}$	$\mathbf{C O 5}$
Q4	Minimize $f(x)=9-8 x_{1}-6 x_{2}-4 x_{3}+2 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}+3 x_{1} x_{2}+2 x_{1} x_{3}$ Subject to $x_{1}+x_{2}+2 x_{3}=3$ By 1$)$ Direct Substitution 2) Constrained Variation 3) Lagrange multiplier Method	$[\mathbf{3 + 3 + 4]}$	$\mathbf{C O 4}$
Q5	Summarize various steps to design or analyze a complex system by simulation with flow chart.	$\mathbf{1 0}$	$\mathbf{C O 5}$

SECTION C (20 Marks)

1. Please solve one question out of two.

2. Write long answers.

Assume any missing data if required.

Q1	a)State your understanding about Positive and negative definite in Hessian Matrix. Discuss indefinite case also. b) Find the extreme points of the function given below and calculate Relative minimum and maximum with nature of Hessian determinant. $f(x 1, x 2)=4 x_{1}^{3}+6 x_{2}^{3}+10 x_{1}^{2}+4 x_{2}^{2}+8$ \qquadOR a)Find the dimensions of a cylindrical tin (with top and bottom) made up of sheet metal to maximize its volume such that the total surface are is equal to 36π. b) Maximize $f=2 x_{1}+x_{2}+15$ Subject to $g(x, y)=x_{1}+2 x_{2}^{2}=3$ Find the solution using a. Method of Constrained Variation. b. Method of Lagrange Multiplier. [10+10]	$\mathbf{C O 4}$	

