Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, May-2021**

Program Name: B.TECH-ME

: Modeling and Simulation **Course Name** : MECH4006P **Course Code** Nos. of page(s) :02

SECTION A (30 Marks)

1. All questions are compulsory in this section.

2. Total 06 questions are there in this section and each question is of 5 Marks.

3. Short answer type questions.

Assume	anv	missing	data	if	required.
abbuilte	uny	in some	uuuu	**	requireu

S. No.							Marks	СО
Q1	Discuss variou engineering sy		s characterizin	g a system by	taking suitable	e example of any	5	CO1
Q2	Categorize the	e implicatio	ons of the syste	em concept.			5	CO1
Q3	Deliberate ma	thematical	modelling and	l state its impo	rtance.		5	CO2
Q4			proach for the f		$\operatorname{ion} f(x, y) =$	$x^2 - y^2$. Predict	5	CO3
Q5	Elaborate Kul inequality con		Condition in op	ptimization of	multivariable	problem having	5	CO5
Q6	Articulate pitf	falls of sim	ulation approa	ch.			5	CO5
				y missing dat	-			
	3. Write brief In a heat treat specific heat 3 =2200C. The i the cube may temperature as	notes. tment proc 300 J/kg.K initial temp y be taken s a function	Assume an ress, a metal c is heated by c perature of the c as uniform,	y missing dat ube of side 2 onvection from cube is, Ti =200 write down th). Obtain the g	a if required. cm, density 6 n a hot fluid a DC. If the temp ne equation t general form o	5000 kg/m3, and at temperature Tf perature T within that governs the of the solution. If	10	CO3
	$\frac{T - Tf}{Ti - Tf}$							

Semester : VIII Time : 03 hrs. Max. Marks: 100

	Obtain a best fit to these data using information from the analytical solution for $T(\tau)$. Sketch the resulting curve and plot the original data to indicate how good a representation of the data is obtained by this curve. From the results obtained,		
Q2	 compute the heat transfer coefficient h. Apply the concept of constraint surfaces develop a hypothetical two dimensional design space. Discuss applicability and non-applicability of this approach too. 	10	CO4
Q3	Compare different types of simulation approach with suitable example of each.	10	CO5
Q4	Minimize $f(x) = 9 - 8x_1 - 6x_2 - 4x_3 + 2x_1^2 + 2x_2^2 + x_3^2 + 3x_1x_2 + 2x_1x_3$ Subject to $x_1 + x_2 + 2x_3 = 3$ By 1) Direct Substitution 2) Constrained Variation 3) Lagrange multiplier Method	[3+3+4]	CO4
Q5	Summarize various steps to design or analyze a complex system by simulation with flow chart.	10	CO5
	SECTION C (20 Marks)	I	
1.	Please solve one question out of two.		
2.	Write long answers.		
0.1	Assume any missing data if required.		
Q1	 a) State your understanding about Positive and negative definite in Hessian Matrix. Discuss indefinite case also. b) Find the extreme points of the function given below and calculate Relative minimum and maximum with nature of Hessian determinant. f(x1,x2) = 4x₁³ + 6x₂³ + 10x₁² + 4x₂² + 8 		
	OR		
	a)Find the dimensions of a cylindrical tin (with top and bottom) made up of sheet metal to maximize its volume such that the total surface are is equal to 36π .	[10+10]	CO4
	b) Maximize $f = 2x_1 + x_2 + 15$ Subject to $g(x, y) = x_1 + 2x_2^2 = 3$ Find the solution using a. Method of Constrained Variation. b. Method of Lagrange Multiplier.		