Name: Enrolme	nent No:			
	UNIVERSITY OF PETROLEUM AND ENERGY S	TUDIES		
	End Semester Examination, May 2021			
Programme Name: B. Tech (CE+RP)SemesterCourse Name: Process Modelling and SimulationTime			: 03 hrs	
2) The 1	tions: 1) Assume suitable data wherever necessary. notations used here have usual meanings. your signature at the bottom of every answer page. SECTION A (Total Marks: 6 x 5 = 30)			
S. No.	Select the correct answer.	Marks	СО	
Q 1	The output from a model of a factory that makes bricks is most likely to be a) Dynamic model b) Static model 	05	C01	
Q 2	The boundary condition, dT/dx = 0, is called as a) Neumann boundary condition b) Dirichlet boundary condition	05	C01	
Q 3	One of the assumptions of CSTB is that the feed is sterile. It means that a) Feed has no microorganism b) Feed rate is zero c) Feed has no substrate d) Both a and c 	05	CO2	
Q 4	Simulation can not produce optimum result a) True b) False	05	CO3	
Q 5	The system of two dimensional heat conduction in plane slab at steady s mathematically represented by a) Partial differential equations b) Ordinary differential equations c) Analytical equations d) Polynomial equations	tate is 05	CO4	
Q 6	 ANN has following activation layer(s) a) Input layer b) Hidden layer c) Output layer d) Both b and c 	05	CO5	

	SECTION B (Total Marks: 5 x 10 = 50)		
Q 7	From the following data, determine the reaction order and specific reaction rate for the dissolution of MnO ₂ in HBr. Assume a rate law of the form: $-r_{HBr}^{"} = kC_{HBr}^{\alpha}$ $\frac{C_{A0} \text{ mol HBr/dm}^3 0.1 0.5 1 2 4}{-r_{A0}^{"} \text{ mol HBr/m}^2 \cdot \text{hr x } 10^2 0.073 0.70 1.84 4.86 12.84}$	10	CO1
Q 8	Develop the mathematical model for rectifying and stripping sections of a compartmental distillation column.	10	CO2
Q 9	Explain Monod growth model for cell growth kinetics used in bioreactor.	10	CO2
Q 10	Explain the working of artificial neural network.	10	CO4
Q 11	Differentiate between modular and equation oriented approach.	10	CO5
	SECTION-C (Total Marks: 1 x 20 = 20)		
Q 12	The one-dimensional steady-state material balance for the reactor that expresses the fact that the change in the axial convection of benzene is equal to the amount produced by reaction is $\frac{dy}{dx} = 0.216y$ With $y = 1$ at $x = 0$ $y = \text{concentration of benzene}$ $x = \text{axial coordinate.}$		
	 (i) Calculate y at x = Your Roll No. (e.g. x = 1 for R900217001, x = 11 for R900217011, x = 101 for R900217101) using Runge-Kutta fourth order method. (ii) Compare the analytical solution with the numerical solution and comment on the results. 	14 06	CO3