Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021

ropulsion

Course: Rocket Propulsion Program: B. Tech ASE Course Code: ASEG 4011P Semester: VIII Time 03 hrs. Max. Marks: 100

Instructions: a) All questions are compulsory.

b) Assume any suitable value for the missing data SECTION A

Q 1	Briefly write the assumptions made for ideal rockets.	5	CO1
Q2.	How the quantity of charge of an igniter for a solid rocket motor is decided?	5	CO2
Q3	Explain TVC & its methods by which it can be achieved.	5	CO1
Q4.	How Combustion Instability occurs in the rocket engines and explain the methods to control Instabilities?	5	CO3
Q5	A rocket engine moving at 500 m/s produces a total thrust of 9563 N, consuming propellants at the rate of 4.55 kg/s. The energy content of the propellants is 5.35 MJ/kg. Find the effective exhaust velocity.	5	CO3
Q6	Why is multi-staging necessary in rocket propulsion?	5	CO5
	SECTION B		
Q 1	Analyze the factors influencing injector behavior in the thrust chamber of Liquid Propellant rocket engines.	10	CO4
Q 2	Illustrate the physics of Lorentz force. Briefly explain the working principle of Lorentz Accelerator with emphasis on its applications.	10	CO5
Q 3	Derive an equation relating the mass ratio MR and the propellant mass fraction. OR Characterize Subsonic, Sonic and Supersonic nozzles based on throat velocity, exit velocity, mach number, pressure ratio and shapes.	10	CO3
Q 4	'The functions of the injector are similar to those of a carburetor of an internal combustion engine.' Justify this statement with respect to LPE.	10	CO4
Q 5	A rocket projectile has the following characteristics:Initial mass:200 kgMass after rocket operation:130 kgPayload, nonpropulsive structure, etc.:110 kgRocket operating duration:3.0 secAverage specific impulse of propellant:240 sec	10	CO1

	Determine the vehicle's mass ratio, propellant mass fraction, propellant flow rate, thrust, thrust-to-weight ratio, acceleration of vehicle, effective exhaust velocity, total Impulse and the impulse-to-weight ratio.		
	SECTION-C	1	1
Q 1	 A probe to the jovian system is to be transported there by a Solar Electric Propulsion module. The required Delta-V is 10 km/s and the gravity loss factor is 2.5. In order to identify the optimum exhaust velocity three different engines with exhaust velocities of 20.60 and 200 km/s are under consideration. Using the data given below, for each exhaust velocity a) Calculate the ratio of the mass of the electric power supply to the mass of propellant required (M_E/M_P). b) Calculate the ratio of mass of the payload to the mass of propellant required (M_S/M_P). c) Calculate the mass of propellant and the mass of the power supply, and the mass of the propulsion unit. Identify the optimum exhaust velocity. How would the result change if the burn time were longer? Data: Mission Delta-V: 10 km/s Gravity loss factor: 2.5 Burn Time: 3.2x 10⁷ s Thruster Efficiency: 0.6 Solar panel power to mass ratio: 200 w/kg OR Explain the working principle of the Nuclear Thermal Rocket Engine. Analyze the necessary steps taken for the management of its radiation and briefly explain the potential applications of nuclear engines. 	20	CO5