Name:				UPE	2
Enrolment No:					
Em onnent ivo.		UPES SAP ID:	UNIVERSIT	TY WITH A PURPOSE	
		ROLEUM AND ENERGY ST	TUDIES		
Course		Examination, May, 2021	ter: VIII		
	e: Operation Research am: B.Tech – ADE		3 hours		
-	e Code: MECH4008P		Marks: 100		
	Pages: 02	WIAA. 1	viaiks. 100		
Note:					
1.	The paper consists of 3 sections A, B and C				
	For Section A, type your answers in the bro	-			
	For Sections B and C, scan and upload your	answers.			
4.	In Section C, Q12 has internal choice.				
01		Section A		-	COL
Q1.	(i) Identify the type of the feasible region gives $y \in [1, \infty)$	ven by the set of inequalities		5	CO1
	$x - y \le 1$ $x - y \ge 2$				
	where both x and y are positive.				
	a. A triangle				
	b. A rectangle				
	c. An unbounded region				
	d. An empty region				
	(ii) . An assignment problem can be viewed		-		
	which the capacity from each source is and	the demand at each destination	18.		
	A. 1; 1 B. Infinity; infinity				
	C. 0; 0				
	D. 1000; 1000				
	E1; -1				
Q2.	i. Which of the following is not the phase of	OR methodology?		5	CO2
	A. Formulating a problem				
	B. Constructing a model				
	C. Establishing controls				
	D. Controlling the environment				
	ii. Hungarian Method is used to solve				
	a. A transportation problem				
	b. A travelling salesman problem				
	c. A LP problem				
	d. Both a & b				
	iii In Decomposite solution value of altitude	function			
	iii. In Degenerate solution value of objective	e function.			

i.	a. increases infinitely		
	b. basic variables are nonzero		
	c. decreases infinitely		
	d. One or more basic variables are zero		
Q3.	True or false	5	CO1
	a. Linear programming models have an objective function to be maximized but not minimized.		
	b. Linear programming models exhibit linearity among all constraint relationships and the		
	objective function.		
	c. The graphical approach to the solution of linear programming problems is a very		
	efficient means of solving problems.		
l	d. Slack variables are only associated with maximization problems.		
0.1	e. Surplus variables are only associated with minimization problems.	5	001
Q4.	a. The optimal solution to a linear programming model always occurs at a (an) point of the feasible region.		CO1
	b. Multiple optimal solutions can occur when the objective function line is to a constraint line.		
I	c. In phase 1 of two phase method we remove from the basic matrix.		
I	d. The net cost of shipping one unit on a route not used in the current transportation problem		
I	solution is called the		
Q5.	solution is called the	5	CO4
Q5. Q6.	solution is called thee. A game is said be if lower and upper values of the game are same as well as zero	5	CO4 CO3
-	solution is called the e. A game is said be if lower and upper values of the game are same as well as zero Explain the steps involved in critical path method.		
-	solution is called the e. A game is said be if lower and upper values of the game are same as well as zero Explain the steps involved in critical path method. Briefly describe the steps for solving a transportation problem.		
Q6.	solution is called the e. A game is said be if lower and upper values of the game are same as well as zero Explain the steps involved in critical path method. Briefly describe the steps for solving a transportation problem. Section B Solve using simplex method:	5	CO3
Q6.	solution is called the e. A game is said be if lower and upper values of the game are same as well as zero Explain the steps involved in critical path method. Briefly describe the steps for solving a transportation problem. Section B	5	CO3
Q6.	solution is called the e. A game is said be if lower and upper values of the game are same as well as zero Explain the steps involved in critical path method. Briefly describe the steps for solving a transportation problem. Section B Solve using simplex method: Maximize $Z = 40x_1 + 80x_2$	5	CO3
Q6.	solution is called thee. A game is said be if lower and upper values of the game are same as well as zeroExplain the steps involved in critical path method.Briefly describe the steps for solving a transportation problem.Section BSolve using simplex method:Maximize $Z = 40x_1 + 80x_2$ Subject to the constraints	5	CO3
Q6.	solution is called thee. A game is said be if lower and upper values of the game are same as well as zeroExplain the steps involved in critical path method.Briefly describe the steps for solving a transportation problem.Section BSolve using simplex method:Maximize $Z = 40x_1 + 80x_2$ Subject to the constraints $2x_1 + 3x_2 \le 48$	5	CO3
Q6.	solution is called thee. A game is said be if lower and upper values of the game are same as well as zeroExplain the steps involved in critical path method.Briefly describe the steps for solving a transportation problem.Section BSolve using simplex method:Maximize $Z = 40x_1 + 80x_2$ Subject to the constraints $2x_1 + 3x_2 \le 48$ $x_1 \le 15$ $x_2 < 10$	5	CO3
Q6.	solution is called thee. A game is said be if lower and upper values of the game are same as well as zeroExplain the steps involved in critical path method.Briefly describe the steps for solving a transportation problem.Section BSolve using simplex method:Maximize $Z = 40x_1 + 80x_2$ Subject to the constraints $2x_1 + 3x_2 \le 48$ $x_1 \le 15$	5	CO3
Q6.	solution is called the e. A game is said be if lower and upper values of the game are same as well as zero Explain the steps involved in critical path method. Briefly describe the steps for solving a transportation problem. Solve using simplex method: Maximize $Z = 40x_1 + 80x_2$ Subject to the constraints $2x_1 + 3x_2 \le 48$ $x_1 \le 15$ $x_2 < 10$ $x_1 - x_2 > 0$	5	CO3
Q6.	solution is called thee. A game is said be if lower and upper values of the game are same as well as zeroExplain the steps involved in critical path method.Briefly describe the steps for solving a transportation problem.Section BSolve using simplex method:Maximize $Z = 40x_1 + 80x_2$ Subject to the constraints $2x_1 + 3x_2 \le 48$ $x_1 \le 15$ $x_2 < 10$ $x_1 - x_2 > 0$ Tata manufactures Cars two factories, one in Pune and one in Jamshedpur. The Pune	5	CO3
Q6.	solution is called thee. A game is said be if lower and upper values of the game are same as well as zeroExplain the steps involved in critical path method.Briefly describe the steps for solving a transportation problem.Section BSolve using simplex method:Maximize $Z = 40x_1 + 80x_2$ Subject to the constraints $2x_1 + 3x_2 \le 48$ $x_1 \le 15$ $x_2 < 10$ $x_1 - x_2 > 0$ Tata manufactures Cars two factories, one in Pune and one in Jamshedpur. The Pune factory can produce as many as 150 Cars per days, and the Jamshedpur factory can produce	5	CO3
Q6.	solution is called thee. A game is said be if lower and upper values of the game are same as well as zeroExplain the steps involved in critical path method.Briefly describe the steps for solving a transportation problem.Section BSolve using simplex method:Maximize $Z = 40x_1 + 80x_2$ Subject to the constraints $2x_1 + 3x_2 \le 48$ $x_1 \le 15$ $x_2 < 10$ 	5	CO3
Q6.	solution is called thee. A game is said be if lower and upper values of the game are same as well as zeroExplain the steps involved in critical path method.Briefly describe the steps for solving a transportation problem.Section BSolve using simplex method:Maximize $Z = 40x_1 + 80x_2$ Subject to the constraints $2x_1 + 3x_2 \le 48$ $x_1 \le 15$ $x_2 < 10$ $x_1 - x_2 > 0$ Tata manufactures Cars two factories, one in Pune and one in Jamshedpur. The Pune factory can produce as many as 150 Cars per days, and the Jamshedpur factory can produce as many as 200 cars per day. Cars are shipped by air to customers in Delhi and Bombay. The customers in each city require 130 Cars per day. Because of the deregulation of	5	CO3

		Bangalore	Chennai	Delhi	Bombay	Supply		
	Pune	8	13	25	28	150		
	Jamshedp		12	26	25	200		
	Bangalor		6	16	17	350		
	Chennai	6	0	10	16	350		
	Demand	350	350	130	130	550		
Q9	Table shows a feasible solution to a transportation problem. Is it optimal solution? If not, find an optimal solution using this feasible solution.					10	CO3	
	2 10		40 4	6	20 100			
	4 20) 7 6		40 7	60			
	5	6 3	30	3	50			
	4	7 30 8	4	50 8	80			
	30	60 70	0 90	40				
Q10	 In a service department manned by one server, on an average 8 customers arrive every 5 minutes while the server can serve 10 customers in the same time assuming Poisson distribution for arrival and exponential distribution for service rate. Determine: a) Average number of customers in the system. b) Average number of customers in the queue. c) Average time a customer spends in the system. d) Average time a customer waits before being served 						10	CO3
Q11	Consider the follow						10	CO2
	Minimize Subject to	$\mathbf{Z} = \mathbf{X}$	$X_1 - X_2$ $X_1 + X_2 \ge X_1 + 2X_2 \le X_2 \ge 0$ $X_1 = 0$	≤ 8				
	$X_1 \ge 0, X_2 \ge 0,$							
	Identify the feasible region on a graphical representation of the problem and answer							
	the following question:							
	(a) What is the optimal solution							
	(i) To the given problem?						1	
	(1) 10	the given problem	n?					

